期刊文献+

“互联网+”背景下学习方式的特征、内在取向与解构 被引量:9

The Characteristic of Learning Method, Internal Orientation and Deconstruction in the Background of “Internet plus”
下载PDF
导出
摘要 "互联网+"背景下的学习方式表现出泛在学习趋势明显、次生需求逐渐增强、教育舆情影响日益突出以及学习效果整体依赖多样化等特征。当前,应超越"互联网+"新技术属性,从情感、行为、认知以及道德素养四个层次剖析其内在取向:关注学习者的学习情感投入度,避免出现依靠新颖技术吸引学习者的教育内容;运用先进技术手段的目的是形成事前计划、事中控制(干预)、事后分析的良性迭代机制,其优势和核心是事中动态规划和分析;摆脱"浅表化学习"阴影,利用多维感知方式的深度学习,从而形成高级思维能力。 The learning method in the background of "Internet plus" is characterized by the obvious trend of u- biquitous learning, the gradual increase of secondary needs, the increasingly prominent influence of educationally pub- lic opinion and the whole learning effect depending on diversification. Currently, we should go beyond the new techni- cal attributes of "Internet plus" and analyze its intrinsic orientation from such four levels as emotion, behavior, cogni- tion and moral quality. It is necessary to pay attention to the input of learning emotion of learners and avoid the edu- cational contents relying on the novel technology to attract the students; the use of advanced technical means is aimed for building the benign iterative mechanism of planning in advance, intermediate control(intervention) and post-anal- ysis, which has the advantages and core with intermediate dynamic programming and analysis; the "superficial-learn- ing" shadow should be eliminated and the multidimensional perception should be used for deep learning so as to de- velop into an advanced thinking ability.
作者 严玥 YAN Yue(College of Computer and Information Engineering, Chongqing Technology and Business Universit)
出处 《教育理论与实践》 CSSCI 北大核心 2018年第12期40-42,共3页 Theory and Practice of Education
关键词 “互联网+” 学习方式 内在取向 学习情感 深度学习素养 "Internet plus" learning method internal orientation learning emotion deep learning quality
  • 相关文献

参考文献4

二级参考文献40

  • 1苏振华,郁建兴.公众参与、程序正当性与主体间共识——论公共利益的合法性来源[J].哲学研究,2005(11):63-69. 被引量:36
  • 2沃恩,巴斯,著,沈崇麟,译.科学决策方法:从社会科学研究到政策分析[M].重庆:重庆大学出版社,2006.
  • 3BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 4BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 5HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 6BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 7LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 8VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 9VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 10YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.

共引文献681

同被引文献83

引证文献9

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部