期刊文献+

TC4钛合金超高周疲劳性能研究 被引量:3

On the ultra-high cycle fatigue behavior of titanium alloy TC4
原文传递
导出
摘要 应用基于压电超声疲劳技术开发的20kHz超声疲劳拉压试验系统,在室温下完成了对称载荷作用下TC4钛合金的超高周疲劳试验,并分析了次表面断裂的试件断口。结果表明:疲劳循环大于10 7周次时,试件仍会发生疲劳断裂,且疲劳强度会随循环次数的增加而下降,不存在明显的疲劳极限;TC4钛合金断口呈现“类鱼眼”形貌,能谱分析未观察到裂纹源处夹杂物的存在;疲劳断面的粗糙度随与疲劳源区距离的增大而减小,裂纹在后期扩展速率较快,并伴随少量塑性变形。该TC4钛合金次表面疲劳裂纹的产生是由其微观组织的不均匀或晶粒内部的滑移带导致的。 Applying a 20kHz ultrasonic fatigue tension and compression experimental system developed based on piezoelectric ultrasonic fatigue technology, an ultra-high cycle fatigue experiment was carried out for titanium alloy TC4 under condition of symmetrical loading and at room temperature, and specimen's fracture surface due to subsurface fracture was analyzed. Results show that when fatigue cycle is more than 10 7 , fatigue fracture still occurs, and fatigue strength decreases with the increase of cycle number, there is not obvious fatigue limit of specimen. The morphology of TC4 titanium alloy fracture surface presents "fish-like" shape. Inclusions in crack source area is not observed by energy spectrum analysis. The roughness of fracture surface decreases with the increase of distance to fatigue source area, and crack propagation rate is faster in the later stage and is accompanied by a small amount of plastic deformation. The fatigue cracks on subsurface of TC4 titanium alloy are caused by the microstructures inhomogeneity or slip bands inside the grains.
作者 陈皎 程礼 焦胜博 鲁凯举 CHEN Jiao1 , CHENG Li1,2 , JIAO Sheng-bo1 , LU Kai-ju1(1. Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi'an 7100382, China ;2. Advanced Aero Engine Collaborative Innovation Center, Beijing 100191, Chin)
出处 《实验力学》 CSCD 北大核心 2018年第2期272-280,共9页 Journal of Experimental Mechanics
基金 国家自然科学基金青年人才项目(11402302) 陕西省自然科学基金(2016JQ1031) 第59批博士后基金面上一等资助
关键词 TC4钛合金 超高周疲劳 次表面裂纹源 断口形貌 Titanium alloy TC4 ultra-high cycle fatigue subsurface crack saurce fracture morphology
  • 相关文献

参考文献4

二级参考文献52

  • 1周承恩,洪友士.GCr15钢超高周疲劳行为的实验研究[J].机械强度,2004,26(z1):157-160. 被引量:21
  • 2倪金刚.超声振动载荷下合金的疲劳裂纹扩展性能研究[J].航空动力学报,1994,9(3):298-300. 被引量:6
  • 3倪金刚.超声疲劳试验技术的应用[J].航空动力学报,1995,10(3):245-248. 被引量:12
  • 4[1]Roth L D. Ultrasonic fatigue testing, Metals Handbook [M].Ninth Edition, ASM,Metals Park, Ohio, USA, 1987,8:240~257.
  • 5[2]Wang Q Y, Berard J Y, Bathias C, et al. Gigacycle fatigue of ferrous alloys[J]. Fatigue and Fracture of Engineering Materials and Structures, 1999,22:667~672.
  • 6[3]Wang Q Y, Berard J Y, Bathias C, et al. High-cycle fatigue crack initiation and propagation behaviour of high-strength spring steel wires[J]. Fatigue and Fracture of Engineering Materials and Structures, 1999,22:673~677.
  • 7[4]Stanzl-tschegg, S E. Fracture mechanisms and fracture mechanics at ultrasonic frequencies[J]. Fatigue and Fracture of Engineering Materials and Structures,1999,22:567~579.
  • 8[5]Zettl B, Mayer H,Stanzl-tschegg S E. Fatigue properties of Al-1Mg-0.6Si foam at low and ultrasonic frequencies [J]. International Journal of Fatigue, 2001,23:565~573.
  • 9[6]Stanzl-tschegg S E, Mayer H R, Tschegg E K. High frequency method for torsion fatigue testing[J].Ultrasonics, 1993,31:275~280.
  • 10[7]Ishii K, Ebara R, et al. Ultrasonic fatigue behavior of Ti-6Al-4V alloy[J]. J Soc Mat Sci Japan,1993,42:1218~1223.

共引文献95

同被引文献41

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部