期刊文献+

脉冲和正则控制下的最优注资:一种混合策略

Optimal stochastic impulse and regular control for capital injections: A hybrid strategy
原文传递
导出
摘要 本文用漂移Brown运动表示公司的现金流,研究了公司的最优注资问题.基于实际情况,本文假设市场上有两种注资类型:脉冲注资和正则注资,同时假设这两种注资都需要支付比例成本,且每次脉冲注资还需支付固定成本.公司决策者要确定公司的注资策略,就需要确定正则注资率(有最大值限制)、注资的时间和脉冲注资量.从控制公司成本的角度出发,决策者需在现金流为正的约束下,寻找最小化注资成本的注资策略.因此,决策者面临一个脉冲和正则控制的混合问题,本文得到了该问题的值函数和最优控制策略,发现最优的注资策略是与模型参数相关的混合注资策略,同时也分析了模型参数对值函数和最优注资策略的敏感性. This paper investigates an optimal capital injection problem for a large company whose cash flow is described by a drifted Brownian motion. We firstly bring forward the fact that the decision maker can choose the types of capital injection including regular or/and impulse injections in practice. The decision maker has the option to decide the capital injection rate(with a maximum restriction) of regular injection and the capital injection time and the amount of impulse injection as well. We assume that both types of capital injections have proportional costs, and an additional fixed cost occurs associated with each impulse capital injection. From the point of view of cost control, the purpose of the decision maker is to find a strategy to minimize the cost of capital injections, with the minimal requirement that the firm has a positive cash flow. It leads to a mixed stochastic impulse and regular control problem. Under this criterion, we obtain the value function and the optimal control strategy which is a hybrid type of impulse and regular capital injections. At last, we also show the sensibilities of model parameters to the optimal strategy and the value function.
作者 李鹏 周明 孟辉 Peng Li;Ming Zhou;Hui Meng
出处 《中国科学:数学》 CSCD 北大核心 2018年第4期565-578,共14页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11571388和11771465) 高等学校学科创新引智计划(批准号:B17050) 中央高校基本科研业务费专项资金 中央财经大学科研创新团队支持计划资助项目
关键词 注资 混合策略 脉冲控制 正则控制 固定成本 比例成本 capital injections, hybrid strategy, impulse control, regular control, fixed cost, proportional cost
  • 相关文献

参考文献2

二级参考文献24

  • 1Young V R. Premium principles. In: Encyclopedia of Actuarial Science, vol. 3. West Sussex: John Wiley ~ Sons, 2004, 1323 1331.
  • 2Chi Y C, Meng H. Optimal reinsurance arrangements in the presence of two reinsures. Scand Actuar J, 2014, 5: 424-438.
  • 3Meng H. Optimal impulse control with variance premium principle (in Chinese). Sci Sin Math, 2013, 43:925-939.
  • 4Cadenillas A, Sarkar S, Zapatero F. Optimal dividen policy with mean-reverting cash reservoir. Math Finance, 2007, 17:81-109.
  • 5Guo X, Wu G L. Smooth fit principle for impulse control of multidimensional diffusion processes. SIAM J Control Optim, 2009, 48:594 617.
  • 6Schmidli H. On minimizing the ruin probability by investments and reinsurance. Ann Appl Probab, 2002, 12:890-907.
  • 7Asmussen S, Albrecher H. Ruin Probabilities. 2nd ed. Hackensack: World Scientific Publishing, 2010.
  • 8Asmussen S, Hcjgaard B, Taksar M. Optimal risk control and dividend distribution policies: Example of excess of loss reinsurance for an insurance corporation. Finance Stoch, 2000, 4:299-324.
  • 9Paulsen J. Optimal dividend payments until ruin of diffusion processes when payments are subject to both fixed and proportional costs. Adv Appl Probab, 2007, 39:669-689.
  • 10Cadenillas A, Choulli T, Taksar M, et al. Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm. Math Finance, 2006, 16:181-202.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部