期刊文献+

多示例的输电线路区域车辆识别算法

Based on Multi-example Transmission Line Regional Vehicle Identification Algorithm
下载PDF
导出
摘要 输电线路周围区域出现的挖掘机等特种车辆是引起输电线路损害的高风险因素,因此成为输电线智能视频分析系统重点监控的对象。本文提出了一种多示例学习方法,采用局部加权的Citation-kNN算法,以训练样本分布为依据,为选举集合中的元素设置局部权值。通过实验验证该方法,能够有效地区分出输电线路区域内的车辆类型。 The special vehicles such as excavators, which appear in the area around the transmission line, are the high risk factors cau- sing transmission line damage. Therefore, they are the key monitoring objects of the intelligent video analysis system for transmission lines. This paper presents a multi instance learning method, Citation -kNN (CkNN) algorithm using a locally weighted, in full con- sideration of the distribution of training samples, according to the distribution of samples to vote for the elements of the set the corre- sponding weights. Experimental results show that this method can effectively distinguish the types of vehicles in the transmission line area.
作者 陈清江 王金城 郑敏 CHEN Qlngjiang1, WANG Jingcheng1, ZHENG Min2(1Zhongshan Power Supply Bureau, Guangdong Power Grid Corporation, Zhongshan, 528400, China, :Shanghai Institute of M icrosystem and Information Technology Chinese Academy of Sciences, Shanghai, 200050, Chin)
出处 《网络新媒体技术》 2018年第2期29-35,共7页 Network New Media Technology
基金 中国南方电网有限责任公司科技项目(GDKJQQ20152085)
关键词 输电线区域 视频监控系统.车辆识别 多示例 Transmission line area, Video monitor system,Vehicle identification, Multiple instance learning
  • 相关文献

参考文献1

二级参考文献6

  • 1Dietterich T G,Lathrop R H, Lozano-Perez P T. Solving the multiple-instance problem with axis-parallel rectangles [J]. Artificial Intelligence, 1997, 89 (1- 2):31- 71
  • 2O Maron, T Lozano-Perez. A framework for multiple-instance learning [C].Advanees in Neural Information Processing Systems. MIT Press, 1998
  • 3Wang J. , Zucker J.-D.. Solving the multiple-instance problem: A lazy learning approach. In:Langley P. eds. Proc. of the 17th International Conference on Machine Learning, San Francisco, 2000, 341-349
  • 4Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, San Mateo, CA: Morgan Kaufmann, 1988.
  • 5Blake C, Keogh E, Merz C J. UCI repository of machine learning databases. Department of Information and Computer Science, University of California, Irvine, CA, 1998. [http://www.ics.uci.edu/-mlearn/MLRepository.html]
  • 6徐甜,肖新峰.Web文本表示及其分类研究[J].微计算机信息,2007,23(21):284-285. 被引量:7

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部