期刊文献+

Computing the Determinant of a Matrix with Polynomial Entries by Approximation

Computing the Determinant of a Matrix with Polynomial Entries by Approximation
原文传递
导出
摘要 Computing the determinant of a matrix with the univariate and multivariate polynomial entries arises frequently in the scientific computing and engineering fields. This paper proposes an effective algorithm to compute the determinant of a matrix with polynomial entries using hybrid symbolic and numerical computation. The algorithm relies on the Newton's interpolation method with error control for solving Vandermonde systems. The authors also present the degree matrix to estimate the degree of variables in a matrix with polynomial entries, and the degree homomorphism method for dimension reduction. Furthermore, the parallelization of the method arises naturally.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2018年第2期508-526,共19页 系统科学与复杂性学报(英文版)
基金 supported by China 973 Project under Grant No.2011CB302402 the National Natural Science Foundation of China under Grant Nos.61402537,11671377,91118001 China Postdoctoral Science Foundation funded project under Grant No.2012M521692
关键词 Approximate interpolation dimension reduction error controllable algorithm symbolicdeterminant Vandermonde systems. 多项式 矩阵 计算 条目 有效算法 插值方法 错误控制 并行化
  • 相关文献

参考文献2

二级参考文献38

  • 1Bjorck A, Pereyra V. Solution of Vandermonde systems of equations. Math Comput, 1970, 24:893-903.
  • 2Higham N J. Fast solution of Vandermonde-like systems involving orthogonal polynomials. IMA J Numer Anal, 1988, 8:473-486.
  • 3Calvetti D, Reichel L. Fast inversion of Vandermonde-like matrices involving orthogonal polynomials. BIT Numer Math, 1993, 33:473-484.
  • 4Zhang J, Yang L, Deng M. The parallel numerical method of mechanical theorem proving. Theor Comput Sci, 1990, 74:253- 271.
  • 5Zippel R. Interpolating polynomials from their values. J Symb Comput, 1990, 9:375 -403.
  • 6Marco A, Martfnez J J. Parallel computation of determinants of matrices with polynomial entries. J Symb Comput, 2004, 37:749-760.
  • 7Chen L. Study on Several Parallel Algorithms of Symbolic Computation. Dissertation for the Doctoral Degree. Shang- hal: East China Normal University. 2008.
  • 8Li Y. An effective algorithm of computing symbolics determinants with multivariate polynomial entries. Appl Math Comput, 2007, 192:382 -388.
  • 9Li Y. An effective hybrid algorithm for computing symbolic determinants. Appl Math Comput, 2009, 215:2495-2501.
  • 10Knmara K, Anal H. Parallel computation of determinants of matrices with polynomial entries of robust control design. In: International Workshop on Parallel and Symbolic Computation (PASCO). Grenoble: ACM Press, 2010. 173 -174.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部