期刊文献+

深度学习与人脸识别方法研究 被引量:1

A Study of Deep Learning and Human Face Recognition Methods
下载PDF
导出
摘要 传统的机器学习方法需要对每个领域都获取大量的训练数据,这样就会在研究中耗费大量的人力物力。深度学习可以更好地通过增加数据集的规模来改善学习结果。深度学习更适合于未标记数据,而这超出了自然语言处理的范畴,后者更多限于实体识别。基于深度学习的优点,这篇文章利用深度学习方法来进行人脸识别,提出了构建深度学习网络的方法,它能够识别训练集中没有身份的表情信息。 Traditional machine learning method needs to obtain a large amount of training data for each field, so it will cost a lot of manpower and material resources in the research. Deep learning can better improve learning results by increasing the size of data sets. Deep learning is more suitable for unmarked data, which goes beyond natural language processing, and the latter is more limited to entity recognition. Based on the advantages of deep learning, this paper applies the deep learning method to face recogni-tion, and proposes a method of constructing deep learning network, which can recognize information of facial expression without identi-ty in the training set.
作者 姜慧
出处 《科技创新与应用》 2018年第12期22-23,共2页 Technology Innovation and Application
关键词 人脸识别 深度学习 神经网络 特征识别 算法 face recognition deep learning neural network feature recognition algorithm
  • 相关文献

参考文献3

二级参考文献30

  • 1MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 2MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 3李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 410 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 5Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 6Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 7Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 8Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.
  • 9LeCun y, Boser B, DenkerJ S. et a1. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, I: 541-551.
  • 10Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)[OLJ.[2013-08-01J. http://www. image?net.org/challenges/LSVRC/2012/.

共引文献617

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部