期刊文献+

改进的压缩感知重构算法研究 被引量:1

Research on Improved Compressive Sensing Reconstruction Algorithm
下载PDF
导出
摘要 为了对未知稀疏度信号、特殊信号、含噪声信号进行准确重构,提出一种改进的压缩感知重构算法——预测正交匹配追踪算法。提出的算法通过所选支撑集内原子总数、信号间能量差以及残差共同预测并选择所需原子。预测正交匹配追踪算法能够在稀疏度未知的情况下自适应地对块稀疏信号、噪声信号及图片信号进行准确重构。实验结果表明,在相同条件下,改进后的算法提高了重构质量,减少运行时间。 In order to accurately reconstruct the unknown sparse signal,the special signal and the noise signal,an improved compressive sensing reconstruction algorithm—a forecast orthogonal matching pursuit algorithm proposed.The proposed algorithm predicts and selects the desired atoms by the total number of atoms in the selected support set,the energy difference between the signals and the residuals information.The forecast orthogonal matching pursuit algorithm can adaptively reconstruct the block sparse signals,the noise signals and the picture signals in the case of unknown sparse degree.The experimental results show that the improved algorithm improves the quality of reconstruction and reduces the running time under the same conditions.
作者 刘馨月 赵志刚 吕慧显 解昊 刘成士 董晓晨 LIU Xin-yue;ZHAO Zhi-gang;L Hui-xian;XIE Hao;LIU Cheng-shi;DONG Xiao-chen;(a. College of Computer Science and Technology,b. College of Automation and Electrical Engineering,Qingdao University,Qingdao 266071,Chin)
出处 《青岛大学学报(自然科学版)》 CAS 2018年第1期61-68,共8页 Journal of Qingdao University(Natural Science Edition)
基金 山东省科学技术发展计划(批准号:2012YD01058)资助
关键词 压缩感知 重构算法 匹配追踪 未知稀疏度 compressive sensing reconstruction a lg o r ithm matching p u rs u i t unknown sparse degree
  • 相关文献

参考文献3

二级参考文献129

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献779

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部