期刊文献+

用户偏好模型在众包中应用的研究 被引量:1

The Research of the Applying User Interest Model to Crowdsourcing
下载PDF
导出
摘要 越来越多的公司或企业借助众包来完成工作,导致众包任务数量急剧增长,而当前众包平台的任务搜索功能还不能满足工人的个性化需求,这使工人难以从海量任务中选择感兴趣且擅长的任务。针对众包工作模式的特点,提出了一种基于工人—任务关系评价兴趣度值的方法,并结合工人的浏览内容和历史完成记录提出了用户偏好模型的表示和更新机制,从而建立用户兴趣模型。选取在众包平台上的真实数据集进行实验分析,验证了该模型的性能,证明该模型能较为准确的反映工人的兴趣偏好。 More companies or enterprises complete their work by crowdsourcing, resultcrease of crowdsourcing tasks. However, the current crowdsourcing platform cannot meet for personalized task searching, which makes workers feel more difficutt to sort out the suitable tasks from the massivetasks. This paper proposed a method to evaluate the interest rate based on the relatioand task for crowdsourcing. Combining the contents the user had browsed with the history records, wepresent the representation and update mechanism for user interest model. The effectiveness of the model is verified through experimental analysis on real dataset of crowdsourcing platform. The resutt shows thatthis model can reflect the interest of worker with a high rate of accuracy.
作者 王晓燕 李劲华 WANG Xiao- yan, LI Jin- hua(School of Data Science and Software Engineering, Qingdao University, Qingdao 266071, Chin)
出处 《青岛大学学报(自然科学版)》 CAS 2018年第1期102-108,共7页 Journal of Qingdao University(Natural Science Edition)
关键词 众包 任务搜索 个性化 兴趣度 用户偏好模型 crowdsourcing task searching personalized interest ra te user interest model
  • 相关文献

参考文献5

二级参考文献222

  • 1贺敏,王丽宏,杜攀,张瑾,程学旗.基于有意义串聚类的微博热点话题发现方法[J].通信学报,2013,34(S1):256-262. 被引量:12
  • 2林鸿飞,杨元生.用户兴趣模型的表示和更新机制[J].计算机研究与发展,2002,39(7):843-847. 被引量:23
  • 3赵鹏,耿焕同,王清毅,蔡庆生.基于聚类和分类的个性化文章自动推荐系统的研究[J].南京大学学报(自然科学版),2006,42(5):512-518. 被引量:13
  • 4Fung B C M,Wang K,Ester M.Hierarchical document clustering//Wang John ed.The Encyclopedia of Data Warehousing and Mining,idea Group.2005:970-975.
  • 5Salton G.The SMART Retrieval System-Experiments in Automatic Document Processing.Englewood Cliffs,New Jersey:Prentice Hall Inc,1971.
  • 6Wang Y,Julia H.Document clustering with semantic analysis//Proceedings of the 39th Hawaii International Conferences on System Sciences.Hawaii,US,2006:54-63.
  • 7Hotho A,Staab S,Stumme G.Wordnet improves text document clustering//Proceedings of the Semantic Web Workshop at SIGIR-2003,26th Annual International ACM SIGIR Conference.Toronto,Canada,2003:541-550.
  • 8Hall P,Dowling G.Approximate string matching.Computing Survey,1980,12(4):381-402.
  • 9Coelho T,Calado P,Souza L,Ribeiro-Neto B,Muntz R.Image retrieval using multiple evidence ranking.IEEETransactions on Knowledge and Data Engineering,2004,16(4):408-417.
  • 10Ko Y,Park J,Seo J.Improving text categorization using the importance of sentences.lnformation Processing and Management,2004,40(1):65-79.

共引文献416

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部