期刊文献+

低温热压缩机系统的数值模拟与实验研究 被引量:2

Numerical and Experimental Study of a Low-temperature Thermal-compressor
原文传递
导出
摘要 本文对低温热压缩机系统进行了数值模拟和实验研究,首先对低温热压缩机的运行参数进行了研究,结果表明提高运行频率、增大平均力、降低预冷温度均可增大系统的压比,但同时也会消耗更多的预冷量。之后对热压缩机所需的预冷量和各项热损失进行了分析,结果表明排出器运动产生的损失所占比例最大,是进一步优化的重点。最终本文所研究的低温热压缩机系统,在2 Hz运行频率下、平均压力1 MPa时,所需要的冷量约为54 W@77K,系统可产生1.95的压比。基于此热压缩机系统,进一步驱动单级多路旁通脉冲管制冷机,可成功获取3.8 K的最低温度。 A numerical and experimental study of low-temperature thermal-compressor was presented in this paper. Firstly, the operating parameters of low-temperature thermal-compressor were studied. The results showed that the pressure ratio in the system would increase with the increasing of operating frequency, average pressure and decreasing of pre-cooling temperature, but the precooling power would increase at the same time. Then, the amount of precooling power and thermal-losses were analyzed. The results showed that the thermal-loss caused by the movement of displacer was largest, which was the most important optimizing factor in the next work. Finally, this thermal-compressor has obtained a pressure ratio 1.95 with operating frequency 2 Hz, average pressure 1 MPa and 54 W@77 K precooling power. Based on this thermal-compressor, a lowest temperature 3.8 K has been obtained in a single-stage multi-bypass pulse tube cryocooler.
作者 潘长钊 王珏 张通 周远 王俊杰 PAN Chang-Zhao1, WANG Jue1,2, ZHANG Tong1,2, ZHOU Yuan1,2 ,WANG Jun-Jie1,2(1. CAS Key laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China; 2. University of Chinese Academy of Sciences, Beijing 100049, Chin)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2018年第4期701-706,共6页 Journal of Engineering Thermophysics
基金 博士后创新人才支持计划资助项目(No.BX201600173)
关键词 热压缩机 数值模拟 脉冲管制冷机 液氦温区 thermal-compressor numerical simulation pulse tube cryocooler liquid helium tem-perature
  • 相关文献

参考文献3

二级参考文献13

  • 1杨鲁伟,Marc Dietrich,Guenter Thummes.铅蓄冷材料的二级脉冲管制冷机研究[J].工程热物理学报,2007,28(z1):33-36. 被引量:3
  • 2Radebaugh R. Status and recent trends in cryocooler research [ C ]. Proceedings of International Conference on Cryogenics and Refrigeraa- tion ,2008 : 11-22.
  • 3Radebaugh R. Cryocoolers: the state of the art and recent develop- ments[ Jl - Journal of Physics : condensed matter,2009,21 : 164219.
  • 4Gan zhihua, Qiu Limin, et al. A single-stage G-M type pulse tube cryocooler operating at 10.6K [ J ]. Cryogenics ,2009 (49) : 198-201.
  • 5Olson J, Nast T C,Evtimov B. Development of a 10K pulse tube cryo- cooler for space application[ JJ. Cryogenics ,2003 ( 12 ) :241-246.
  • 6Olson J,Moore M ,Champagne P,et al. Development of a space-type- 4-stage pulse tube cryocooler for very low temperature[ C]. Advances in Cryogenic Engineering, New York : AlP Press, 2006,51 ( A ) : 623- 631.
  • 7Nguyeu T, Colbert R, Durand D, et al. 10K pulse tube cooler[ J~. Cryocoolers, 2007 ( 14 ) :27 -31.
  • 8Qiu Limin,Cao Qiang,Zhi Xiaoqin,et al. A three-stage Stirling pulse tube cryocooler operating below the critical point of helium4 [ J ]. Cryogenics ,2011 (51) :609-612.
  • 9Qiu Limin,Cao Qiang,Zhi Xiaoqin,et al. Operating characteristics of a three-stage Stirling pulse tube cryocooler operating near 5K [ J ]. Cryogenics,2012 (52) :382-388.
  • 10David Gedeon. Sage user' s guide-Stirling pulse-tube and low-T cooler model classes [ M ]. Gedeon Associates,2011.

共引文献14

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部