期刊文献+

基于非均衡样本集的煤矿突水预测模型 被引量:2

Coal Mine Water Inrush Prediction Model Based on Unbalanced Set of Samples
下载PDF
导出
摘要 针对煤矿突水样本集呈非均衡分布的特点,提出基于集成学习分类的煤矿突水预测模型,重点研究基分类器的构建方法、性能衡量指标和权重分析,以及基于改进型Boosting的集成学习算法.实验结果表明,该算法以牺牲不突水样本的最小误判率为代价,实现突水样本100%的判别准确率,且计算量小,易于实现. Taking the non-equilibrium distribution characteristics of the coal mine water burst sample set into account, this study presents a coal mine water inrush prediction model based on the integrated learning classification. It focuses on the construction method of base classifier, the performance index and the weight analysis of base classifier, and the integrated learning algorithm based on improved Boosting. The experimental results show that although the algorithm does not achieve the minimum error rate of non-waterlogging samples, a 100% discrimination rate for water burst samples is realized, and the calculation load is small and it is easy to realize.
作者 谢天保 赵萌 雷西玲 XIE Tian-Bao1, ZHAO Meng1, LEI Xi-Ling2 1(School of Economics and Management, Xi'an University of Technology, Xi'an 710054, China) 2(School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710054, China)
出处 《计算机系统应用》 2018年第4期124-130,共7页 Computer Systems & Applications
关键词 煤矿突水预测 非均衡样本集 基分类器 Boosting改进算法 water inrush prediction unbalanced sample set base classifier Boosting improved algorithm
  • 相关文献

参考文献14

二级参考文献80

共引文献165

同被引文献19

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部