期刊文献+

基于轨迹相似度的伴随人员推荐 被引量:7

Companion Recommendation Based on Trajectory Similarity
下载PDF
导出
摘要 移动网络和智能终端的发展使得基于优质用户的伴随人员的推荐成为互联网发展的热点之一,而伴随人员的推荐算法则是至关重要的因素.针对以往基于地理位置的用户轨迹性相似推荐算法中需基于地理位置或基站数据,且数据稀疏时推荐结果不理想的问题,提出了基于IP场所的轨迹余弦相似度的伴随人员推荐,以更完善的IP场所数据代替地理位置数据,以一段时间的纵向日期和横向时刻分别计算余弦相似度以消除数据稀疏性问题.最后推荐出了相似度质量更高的伴随人员. With the development of mobile networks and intelligent terminals, the recommendation of the companion based on high-quality users has become one of the hot topics in the Internet, and the recommendation algorithm about companion is the crucial factor. In the past, the user location trajectory similarity recommendation algorithm was mainly based on geographic location or base station data and the data sparse may result in undesirable results. This paper proposes a companion recommendation model based on the cosine similarity oflP sites. More comprehensive IP sites data have been used instead of geographic data, and the date time data are calculated for cosine similarity to eliminate the data sparseness problem. Finally, the people with higher similarity and higher quality are recommended.
作者 廖闻剑 田小虎 邱秀连 LIAO Wen-Jian1,2, TIAN Xiao-Hu1,2, QIU Xiu-Lian1 1(Nanjing FiberHome SoRware Technology Co. Ltd., Nanjing 210019, China) 2(Wuhan Research Institute of Posts and Telecommunications, Wuhan 430074, China)
出处 《计算机系统应用》 2018年第4期157-161,共5页 Computer Systems & Applications
关键词 移动轨迹 IP场所 推荐算法 余弦相似度 伴随人员 mobile trajectory IP sites recommendation algorithm cosine similarity companion
  • 相关文献

参考文献9

二级参考文献81

  • 1赵作鹏,尹志民,王潜平,许新征,江海峰.一种改进的编辑距离算法及其在数据处理中的应用[J].计算机应用,2009,29(2):424-426. 被引量:51
  • 2车万翔,刘挺,秦兵,李生.基于改进编辑距离的中文相似句子检索[J].高技术通讯,2004,14(7):15-19. 被引量:64
  • 3章成志.基于多层特征的字符串相似度计算模型[J].情报学报,2005,24(6):696-701. 被引量:40
  • 4Jie Liu,Bodhi Priyantha,Ted Hart,Heitor S.Ramos,Antonio Alfredo Ferreira Loureiro,Qiang Wang.Energy efficient GPS sensing with cloud offloading[C].SenSys,2012:85-98.
  • 5Shuo Shang,Ruogu Ding,Kai Zheng,Christian S.Jensen,Panos Kalnis,Xiaofang Zhou.Personalized trajectory matching in spatial networks[J].VLDB,2013,7.
  • 6Hongbin Zhao,Han Qilong,Pan Haiwei,Yin Guisheng.Spatio-temporal similarity measure for trajectories on road networks[C].ICICSE,2009:189-193.
  • 7Pekka Siirtola,Perttu Laurinen,Juha Roning.A Weighted Distance Measure for Calculating the Similarity of Sparsely Distributed Trajectories[C].ICMLA,2008:802-807.
  • 8Alexandre Hervieu,Patrick Bouthemy,Jean-Pierre Le Cadre.A HMM-based method for recognizing dynamic video contents from trajectories[C].ICIP,2007,4:533-536.
  • 9Horst Bunke.On a relation between graph edit distance and maximum common subgraph[J].Pattern Recognition Letters,1997,18(8):689-694.
  • 10Philip Bille.A survey on tree edit distance and related problems[J].Theoretical Computer Science,2005,337(1-3):217-239.

共引文献165

同被引文献53

引证文献7

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部