摘要
综合考虑日期类型以及温度和湿度等天气因素对微电网负荷的影响,利用灰色理论处理随机性数据的优势以及神经网络的高度非线性,提出了一种基于灰色神经网络的微电网短期负荷预测方法。采用灰色模型、反向传播(BP)神经网络模型和灰色神经网络模型对2个微电网进行短期负荷预测。结果表明:灰色神经网络模型的预测结果精度更高,该方法可为微电网的经济可靠运行提供参考。
With a consideration of the effects of date type and temperature and humidity on microgrid load,using the advantages of gray theory in random data and the high nonlinearity of neural network,a short-term prediction model of microgrid load based on gray neural network was proposed.Then,the loads of two microgrids were predicted with gray model,back propagation(BP) neural network model and gray neural network model.The simulation results showthat the proposed method is accurate and provides a practical reference for the economical operation of microgrid.
作者
张浩
邓步青
彭道刚
夏飞
ZHANG Hao1 , DENG Buqing2, PENG Daogang2, XIA Fei2(1. School of Electronics and Information Engineering,Tongji University, Shanghai 201804, China; 2. School of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, Chin)
出处
《系统仿真技术》
2018年第1期9-13,共5页
System Simulation Technology
基金
上海市"科技创新行动计划"社会发展领域项目(16DZ1202500)
上海市科学技术委员会工程技术研究中心项目(14DZ2251100)
关键词
微电网
短期负荷预测
灰色神经网络
气象因素
microgrid
short-term load prediction
gray neural network
meteorological factors