期刊文献+

Isobaric vapor–liquid equilibrium for ternary system of ethanol, ethyl propionate and para-xylene at 101.3 kPa 被引量:2

Isobaric vapor–liquid equilibrium for ternary system of ethanol, ethyl propionate and para-xylene at 101.3 kPa
下载PDF
导出
摘要 Isobaric vapor–liquid equilibrium(VLE) data for the binary system ethyl propionate(2) + para-xylene(3) and ternary system ethanol(1) + ethyl propionate(2) + para-xylene(2) at atmospheric pressure(101.3 k Pa)were obtained by a VLE modified othmer still. All the experimental data passed a point to point consistency test of Van Ness method, which verified the data reliability. The Wilson and UNIQUAC activity coefficient models were employed to correlate the binary VLE data to obtain binary interaction parameters. Based on binary interaction parameters, ternary VLE data of ethanol(1) + ethyl propionate(2) + para-xylene(3) were predicted by Wilson and UNIQUAC models, which proved that predicted values are consistent with the experimental data.Furthermore, azeotropic phenomenon between ethanol and ethyl propionate disappears when the mole ratio of para-xylene and binary system of ethanol and ethyl propionate is 1:1. Therefore, this paper convinced that para-xylene is a proper extractive additive that could be used in extractive distillation to separate the binary azeotropic system of ethanol and ethyl propionate. Isobaric vapor-liquid equilibrium (VLE) data for the binary system ethyl propionate (2) + para-xylene (3) and ternary system ethanol (1) + ethyl propionate (2) + para-xylene (2) at atmospheric pressure (101.3 kPa) were obtained by a VLE modified othmer still. All the experimental data passed a point to point consistency test of Van Ness method, which verified the data reliability. The Wilson and UNIQUAC activity coefficient models were employed to correlate the binary VLE data to obtain binary interaction parameters. Based on binary interaction parameters, ternary VLE data of ethanol (1) + ethyl propionate (2) + para-xylene (3) were predicted by Wilson and UNIQUAC models, which proved that predicted values are consistent with the experimental data. Furthermore, azeotropic phenomenon between ethanol and ethyl propionate disappears when the mole ratio of para-xylene and binary system of ethanol and ethyl propionate is 1:1. Therefore, this paper convinced that para-xylene is a proper extractive additive that could be used in extractive distillation to separate the binary azeotropic system of ethanol and ethyl propionate.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第3期560-565,共6页 中国化学工程学报(英文版)
基金 Supported by the National Natural Science Foundation of China(21376166)
关键词 Vapor-liquid equilibrium Azeotrope Ethanol Ethyl propionate Para-xylene 二甲苯 kPa 乙醇 系统 平衡 液体 蒸汽 等压
  • 相关文献

参考文献4

二级参考文献41

共引文献46

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部