期刊文献+

The positive function of selenium supplementation on reducing nitrate accumulation in hydroponic lettuce(Lactuca sativa L.) 被引量:9

The positive function of selenium supplementation on reducing nitrate accumulation in hydroponic lettuce(Lactuca sativa L.)
下载PDF
导出
摘要 High nitrate(NO3-) in vegetables, especially in leaf vegetables poses threaten to human health. Selenium(Se) is an important element for maintaining human health, and exogenous Se application during vegetable and crop production is an effective way to prevent Se deficiency in human bodies. Exogenous Se shows positive function on plant growth and nutrition uptake under abiotic and/or biotic stresses. However, the influence of exogenous Se on NO3-accumulation in hydroponic vegetables is still not clear. In the present study, hydroponic lettuce plants were subjected to six different concentrations(0, 0.1, 0.5, 5, 10 and 50 μmol L–1) of Se as Na2 Se O3. The effects of Se on NO3-content, plant growth, and photosynthetic capacity of lettuce(Lactuca sativa L.) were investigated. The results showed that exogenous Se positively decreased NO3-content and this effect was concentration-dependent. The lowest NO3-content was obtained under 0.5 μmol L–1 Se treatment. The application of Se enhanced photosynthetic capacity by increasing the photosynthesis rate(Pn), stomatal conductance(Cs) and the transpiration efficiency(Tr) of lettuce. The transportation and assimilation of NO3-and activities of nitrogen metabolism enzymes in lettuce were also analysed. The NO3-efflux in the lettuce roots was markedly increased, but the efflux of NO3-from the root to the shoot was decreased after treated with exogenous Se. Moreover, Se application stimulated NO3-assimilation by enhancing nitrate reductase(NR), nitrite reductase(Ni R), glutamine synthetase(GS) and glutamate synthase enzyme(GOGAT) activities. These results provide direct evidence that exogenous Se shows positive function on decreasing NO3-accumulation via regulating the transport and enhancing activities of nitrogen metabolism enzyme in lettuce. We suggested that 0.5 μmol L–1 Se can be used to reduce NO3-content and increase hydroponic lettuce yield. High nitrate(NO_3^- ) in vegetables, especially in leaf vegetables poses threaten to human health. Selenium(Se) is an important element for maintaining human health, and exogenous Se application during vegetable and crop production is an effective way to prevent Se deficiency in human bodies. Exogenous Se shows positive function on plant growth and nutrition uptake under abiotic and/or biotic stresses. However, the influence of exogenous Se on NO_3^- accumulation in hydroponic vegetables is still not clear. In the present study, hydroponic lettuce plants were subjected to six different concentrations(0, 0.1, 0.5, 5, 10 and 50 μmol L–1) of Se as Na2 Se O3. The effects of Se on NO_3^- content, plant growth, and photosynthetic capacity of lettuce(Lactuca sativa L.) were investigated. The results showed that exogenous Se positively decreased NO_3^- content and this effect was concentration-dependent. The lowest NO_3^- content was obtained under 0.5 μmol L–1 Se treatment. The application of Se enhanced photosynthetic capacity by increasing the photosynthesis rate(Pn), stomatal conductance(Cs) and the transpiration efficiency(Tr) of lettuce. The transportation and assimilation of NO_3^- and activities of nitrogen metabolism enzymes in lettuce were also analysed. The NO_3^- efflux in the lettuce roots was markedly increased, but the efflux of NO_3^- from the root to the shoot was decreased after treated with exogenous Se. Moreover, Se application stimulated NO_3^- assimilation by enhancing nitrate reductase(NR), nitrite reductase(Ni R), glutamine synthetase(GS) and glutamate synthase enzyme(GOGAT) activities. These results provide direct evidence that exogenous Se shows positive function on decreasing NO_3^- accumulation via regulating the transport and enhancing activities of nitrogen metabolism enzyme in lettuce. We suggested that 0.5 μmol L–1 Se can be used to reduce NO_3^- content and increase hydroponic lettuce yield.
出处 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第4期837-846,共10页 农业科学学报(英文版)
基金 supported by the National High-Tech R&D Program of China(863 Program,2013AA103004) the International S&T Cooperation Program of China(2014DFG32110) the National Key Research and Development Program of China(2014BAD08B020106)
关键词 SELENIUM NO_3^- nitrogen metabolism enzyme SIET photosynthetic performance LETTUCE selenium NO_3^- nitrogen metabolism enzyme SIET photosynthetic performance lettuce
  • 相关文献

参考文献2

二级参考文献23

共引文献75

同被引文献113

引证文献9

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部