期刊文献+

一类二阶非线性差分方程Dirichlet边值问题的多解性和变号解

Sign-changing Solutions for A Class of Discrete Second-order Dirichlet Boundary Value Problem
下载PDF
导出
摘要 应用下降流不变集理论和变分技巧,当参数满足适当的条件时,建立二阶非线性差分方程Dirichlet边值问题存在正解、负解和变号解的充分条件.最后通过一个例子说明定理结论的有效性. Using invariant sets of descending flow and variational methods, when the parameter belongs to appropriate intervals, we establish some sufficient conditions on the existence of sign-changing solutions, positive solutions and negative solutions for second-order nonlinear difference equations with Dirichlet boundary value problem. Finally, an example is given to illustrate our results.
作者 曾宝玲 ZENG Bao-ling(School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006,China)
出处 《嘉应学院学报》 2018年第2期5-12,共8页 Journal of Jiaying University
关键词 变号解 差分方程 DIRICHLET边值问题 下降流不变集 sign-changing solution difference equation dirichlet boundary value problem invariant sets of descending flow
  • 相关文献

参考文献2

二级参考文献14

  • 1宋兰芳,郭志明.一类差分方程边值问题正解的存在性[J].广州大学学报(自然科学版),2009,8(2):45-48. 被引量:5
  • 2舒小保,朱全新.一类二阶常微分方程边值问题的三个解[J].中山大学学报(自然科学版),2005,44(6):5-7. 被引量:1
  • 3AGARWAL R P, O'REGAN D, WONG P J Y. Positive Solutions of Differential, Difference, and Integral Equations [M]. Dordrecht: Kluwer Academic, 1999.
  • 4HE Zhi-min, YU Jian-she. On the existence of positive solutions of fourth-order difference equations [J]. ApplMath Comput, 2005, 161: 139-148.
  • 5LI Yong-kun, LU Ling-hong. Existence of positive solutions of p Laplaeian difference equations [J ]. Appl Math Lett, 2006, 19: 1019-1023.
  • 6AGARWAL R P, PERERA K, O'REGAN D.Multiple positive solutions of singular and nonsingular discrete problems via variational methods [J]. Nonlinear Anal, 2004, 58:69 -73.
  • 7ZHANG Guo-qing, ZHANG Wei-guo, LIU San-yang. Multiplicity result for a discrete eigenvalue problem with discontinuous nonlinearities [ J ]. J Math Anal Appl, 2007, 328: 1068-1074.
  • 8JIANG Li-qun, ZHOU Zhan. Existence of nontrivial solutions for discrete nonlinear two point boundary value problems [J]. Appl Math Comput, 2006, 180: 318-332.
  • 9BREZIS H. Remarks on finding critical points[J]. Commun Pure Appl Math, 1991, 44: 939-963.
  • 10RABINOWITZ P. Minimax Methods in Critical Point Theory with Applications to Differential Equations [M]. CBMS Reg Conf Vol 65, Amer MathSoc, 1986.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部