期刊文献+

基于ABAQUS的应力强度因子求解 被引量:2

Calculation of Stress Intensity Factor Based on ABAQUS
下载PDF
导出
摘要 应力强度因子是断裂分析中的一个重要参数,准确有效地求解应力强度因子对于正确地评估结构的断裂强度至关重要.基于ABAQUS有限元软件,以非对称四点弯曲试样为例,在裂纹尖端区域设置奇异单元,通过J积分实现了应力强度因子的求解,并与解析法、外推法所得结果比较.计算结果表明,通过ABAQUS有限元软件计算应力强度因子是简单有效的,且计算精度较高. Stress intensity factor is an important parameter in the fracture mechanics analysis, and it can accurately and efficiently be solved that is essential for a correct assessment of structural fracture strength. Based on ABAQUS finite element software, taking non-symmetrical four-point bend specimens as an example, the calculation of stress intensity factor is solved by setting singular elements at the crack tip and the J-integral. Compared with analytical method and extrapolation method, the results show that the calculation of the stress intensity factor is simpler and more effective, and higher accuracy though ABAQUS finite element software.
作者 邓文杰 张九灵 谢应坤 胡海燕 杨福荣 DENG Wen-jie;ZHANG Jiu-ling;XIE Ying-kun;HU Hai-yan;YANG Fu-rong(Chongqing Southeast Geological Engineering Investigation and Design Institute, Chongqing 400038, Chin)
出处 《嘉应学院学报》 2018年第2期54-57,共4页 Journal of Jiaying University
关键词 线弹性断裂力学 应力强度因子 奇异等参单元 J积分 ABAQUS linear elastic fracture mechanics stress intensity factor singular isoparametric dements J integral ABAQUS
  • 相关文献

参考文献3

二级参考文献60

  • 1杨卫著.宏微观断裂力学[M]. 国防工业出版社, 1995
  • 2《力学词典》编辑部编.力学词典[M]. 中国大百科全书出版社, 1990
  • 3北京钢铁研究院金属物理室编.工程断裂力学[M]. 国防工业出版社, 1977
  • 4Rossmanith HP. The struggle for recognition of engineering fracturemechanics. In: Rossmanith HP, ed. Fracture Research in Retrospect,An Anniversary Volume in honour of Professor George R. Irwin’s90th Birthday. Rotterdam: Balkema Publishers, 1997.
  • 5Anderson Ted L. Fracture Mechanics-fundamentals and Applications.3rd Edition. Taylor & Francis Group, 2005.
  • 6Kirsch G. Verein Deutscher Ingenieure (VDI) (English: Associationof German Engineers), 42, 1898.
  • 7Inglis CE. Stresses in a plate due to the presence of cracks and sharpcorners. Proc Inst Naval Arch, 1913, 55: 219-241.
  • 8Westergaard HM. Bearing pressures and cracks. ASME J Appl Mech,1939, 61: A-49-53.
  • 9Williams ML. On the stress distribution at the base of a stationarycrack. ASME J Appl Mech, 1957, 24: 109-114.
  • 10Muskhelishvili NI. Some Basic Problems in the Theory of Elasticity.Netherlands: Noordho, Ltd., 1953.

共引文献49

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部