期刊文献+

求解随机拆卸线平衡问题的改进人工蜂群算法 被引量:3

An Improved Artificial Bee Colony Algorithm for Solving Stochastic Disassembly Line Balancing
原文传递
导出
摘要 考虑拆卸时间不确定,以最少工作站开启数量、负荷均衡、尽早拆除有危害和高需求零部件为目标,建立随机拆卸线平衡问题优化模型,并提出一种改进人工蜂群算法。在雇佣蜂、观察蜂开采蜜源阶段,采用变邻域深度搜索策略,通过系统改变邻域结构以增强开采能力;在侦察蜂探索蜜源阶段,构建基于左右变异机制的全局学习策略,以提高探索蜜源质量加速跳出局部最优。最后,通过求解不同规模算例并与其他算法对比,验证所提算法的优越性。 Considering the uncertainty of disassembly time, a stochastic disassembly line balancing problem (SDLBP)model was constructed to minimize the number of opened workstations,distribute idle time across workstations evenly, and process hazardous/high-demand parts early. Then an improved artificial bee colony(IABC) algorithm was proposed to solve this problem. In the IABC, the employed/onlooker bees exploit new food sources using variable neighborhood descent strategy to enhance the ability of exploitation. The scout bees explore new food sources by performing one point left/right operator on the best-so-far food source to accelerate the speed of finding new high-quality solutions and escape from local optima rapidly. The IABC is applied to solve three different scale instances and compared with several other methods. The results show the superiority of the IABC in solving the SDLBP.
作者 王书伟 郭秀萍 周玉莎 WANG Shu-wei;GUO Xiu-ping;ZHOU Yu-sha(School of Economics & Management,Southwest Jiaotong University, Chengdu 610031, China)
出处 《工业工程与管理》 CSSCI 北大核心 2018年第2期16-22,32,共8页 Industrial Engineering and Management
基金 国家自然科学基金资助项目(71471151) 中央高校基本科研业务费专项资金资助项目(26816WCX04)
关键词 拆卸线平衡问题 随机拆卸时间 人工蜂群算法 disassembly line balancing problem stochastic disassembly time artificial bee colony algorithm
  • 相关文献

参考文献6

二级参考文献67

  • 1GUNGOR A,GUPTA S M,POCHAMPALLY K,et al. Complications in disassembly line balancing [C]//Proceedings of SPIE. Bellingham, Wash. ,USA:SPIE,2001:289-298.
  • 2ALTEKIN F T, KANDILLER L, OZDEMIREL N E. Disassembly line balancing with limited supply and subassembly availability [C]//Proeeedings of SPIE. Bellingham, Wash. , USA: SPIE,2004 : 59-70.
  • 3AGRAWAL S, TIWARI M K. A collaborative ant colony algorithm to stochastic mixed-model U-shaped disassembly line balancing and sequencing problem[J].International Journal of Production Research, 2008,46(2) : 1405-1429.
  • 4MCGOVERN S M, GUPTA S M. 2-Opt heuristic for the disassembly line balancing problem[C]// Proceedings of SHE. Bellingham, Wash. , USA: SHE, 2004 : 71-84.
  • 5MCGOVERN S M, GUPTA S M. A balancing method and genetic algorithm for disassembly line balaneing[J]. European Journal of Operational Research,2007,179(3):692-708.
  • 6YAGMAHAN B, YENISEY M M. Ant colony optimization for multi-objective flow shop scheduling problem[J]. Computers and Industrial Engineering,2008,54(3):411-420.
  • 7GARCIA M C, CORDON O, HERRERA F. A taxonomy and an empirical analysis of multiple objective ant colony optimiza- tion algorithms for the bi-criteria TSP[J]. European Journal of Operational Research, 2007,180 ( 1 ) : 116-148.
  • 8DEB K, PRATAP A, AGARWAL S. A fast and elitist multiobjective genetic algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
  • 9BLUM C, BAUTISTA J, PEREIRA J. Beam-ACO applied to assembly line balancing[C]//Proceedings of the 5th International Workshop-ANTS2006. Berlin, Germany:Springer-Verlag, 2006:96 107.
  • 10KOWALCZUK Z, BIALASZEWSKI T. Niching mechanisms in evolutionary computations [J]. International Journal of Applied Mathematics and Computer Science, 2006, 16 (1): 59-84.

共引文献90

同被引文献28

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部