期刊文献+

基于高斯-艾肯特滤波的机动目标跟踪算法

Maneuvering Target Tracking Method Based on Gauss-Aikten Filter
下载PDF
导出
摘要 针对交互式多模型(IMM)算法切换滤波模型缓慢、跟踪精度低甚至发散的问题,提出了在机动目标跟踪中使用的高斯一艾肯特滤波算法。首先,该算法确定观测模型和滤波模型集,分别构造量测方程组和滤波方程组,形成总体观测矩阵;然后,针对跟踪目标的非合作机动,提出使用卡方检验来检验滤波效果,并通过滤波控制算法实时调整滤波内存长度,使用高斯一艾肯特滤波对机动目标跟踪具有很强的灵活性,实现自适应跟踪;最后,在目标跟踪仿真中与三种改进模型集的卡尔曼滤波IMM算法进行对比验证,对两类算法进行了复杂度分析。仿真结果证明了高斯一艾肯特滤波算法的有效性,在无先验信息条件下拥有更高的跟踪精度。 To solve the problem that the model switching speed and accuracy of standard interacting muhiple-model ( IMM ) algo- rithm are tend to decrease in maneuvering target tracking, a maneuvering target tracking algorithm using Gauss-Aikten fiXer is pro- posed. Firstly, state transition equations, measurement equations and total observation equations of Gauss-Aikten filter are de- rived. And then, total observation matrix is constructed via the aherable filter model and filter memory adaptively based on meas- urement data in each filter cycle. Finally, Gauss-Aikten filter have good flexibility on tracking maneuvering target. Performance of the Gauss-Aikten filter is evaluated via a scenario for maneuvering target tracking. Simulation results demonstrated the effectiveness of Gauss-Aikten filter compared with other three popular IMM algorithm.
作者 马健凯 姜秋喜 潘继飞 张坤 MA Jiankai;JIANG Qiuxi;PAN Jifei;ZHANG Kun(School of Electronic Countermeasure, National University of Defense Technology, Hefei 230037, China)
出处 《现代雷达》 CSCD 北大核心 2018年第4期55-60,共6页 Modern Radar
基金 国防预研基金资助项目(41101020207)
关键词 机动目标跟踪 高斯-艾肯特滤波 滤波内存长度 多模型跟踪算法 maneuvering target tracking Gauss-Aikten fiher filter memory multiple-model tracking method
  • 相关文献

参考文献3

二级参考文献43

  • 1杨小军,潘泉,张洪才.基于Monte Carlo方法的自适应多模型诊断[J].控制理论与应用,2005,22(5):723-727. 被引量:4
  • 2Li X R. Multiple-model estimation with variable structure-Part Ⅱ: Model-set adaptation[ J]. IEEE Trans on Automatic Control, 2000,45( 11 ) :2047 - 2060.
  • 3Musicki D, Suvorova S. Tracking in clutter using IMM-IPDA- based algorithms [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2008,44 ( 1 ) : 111 - 126.
  • 4Mallick M, La Scala B F. IMM estimator for ground target tracking with variable measurement sampling intervals[ A]. The 9th International Conference on Information Fusion [ C ]. Florence: IEEE press, 2006,1 - 8.
  • 5Kirubarajan T, Bar-Shalom Y. Kalman filter versus IMM estimator: when do we need the latter [ J ]. IEEE Trans on Aerospace and Electronic Systems,2003,39(4):1452- 1457.
  • 6Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[ J ]. IEEE Transactions on Signal Processing, 2002,50 (2) :174- 188.
  • 7Cappe O, Godsill S J, Moulines E. An overview of existing methods and recent advances in sequential Monte Carlo [ J ]. Proceedings of the IEEE,2007,95(5) :899 - 924.
  • 8Liu G X, Gao E K, Fan C Y. Multirate interacting multiple model algorithm combined with particle filter for nonlinear/ non-Gaussian target tracking[ A]. The 16thInternational Conference on Artificial Reality and Telexistence-Workshops [ C ].Hangzhou: IEEE press,2006,298- 301.
  • 9Boers Y, Driessen J N. Interacting multiple model particle filter [J] .IEE Proceedings Radar Sonar Navigation, 2003, 150(5) : 334- 349.
  • 10LI Liang-qun, JI Hong-bing, LUO Jun-hui. The iterated extended Kalman particle filter[ A]. IEEE. International Symposium on Communications and Information Technology [ C ]. Adelaide: IEEE press,2005,1213 - 1216.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部