摘要
对KdV-Burgers方程的行波解进行线性稳定性分析,数值结果表明:对于正耗散情形,其行波解是稳定的;对于负耗散情形,其行波解是不稳定的.其次构造有限差分法对其行波解进行非线性动力学演化,结果表明:对于正耗散情形,KdV-Burgers方程的行波解是稳定的.本文结果修正和完善了相关文献中所得结论.
We made linearization stability analysis on traveling wave solutions of KdV-Burgers equation. Numerical results indicate that traveling waves are dynamically stable for positive-dissipation case,while they are dynamically unstable for negative-dissipation case. Then we presented a finite difference scheme,which is conditionally stable,for long-time evolution of perturbed traveling waves.Numerical results also show that traveling waves are dynamically stable as positive-dissipation is held. Our results modify and improve conclusions given in relative literatures.
作者
石玉仁
封文星
席忠红
宗谨
宋宗斌
庞军刚
SHI Yuren;FENG Wenxing;XI Zhonghong;ZONG Jin;SONG Zongbin;PANG Jungang(College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China;College of Physics and Hydropower Engineering, Gansu Normal University For Nationalities, Hezuo 747000, China)
出处
《计算物理》
EI
CSCD
北大核心
2018年第2期178-186,共9页
Chinese Journal of Computational Physics
基金
国家自然科学基金(11565021,11047010)
西北师范大学青年教师科研能力提升计划(NWNU-LKQN-16-3)资助项目