摘要
本文在2维空间中运用Crandall和Rabinowitz的分支理论研究一类带立方源项的Keller-Segel模型的分支问题.证明了局部分支解的存在性,并且在分支点附近确定了分支方向.
This paper deals with the bifurcation problem for a Keller-Segel model with a cubic source term by using the local bifurcation method in R^2. First we prove the existence of local bifurcation branches of stationary solutions for this model. Second, the directions of the branches near the bifurcation points are obtained.
作者
高海燕
GAO Haiyan(School of Statistics, Lanzhou University of Finance and Economics, Lanzhou 730020, Chin)
出处
《应用数学》
CSCD
北大核心
2018年第2期243-249,共7页
Mathematica Applicata
基金
Supported by the Natural Science Foundation of Gansu Province(1606RJZA038)
the Scientific Study Project for Gansu Province Institutes of Higher Learning(2017B-41)
the National Statistical Scientific Research Projects(2017LZ41)
关键词
趋化模型
立方源项
分支
非常数正平衡解
Chemotaxis model
Cubic source term
Bifurcation
Nonconstant positivesteady state