摘要
本文建立混合高斯模型下支付连续红利的永久美式期权定价模型.利用自融资策略和分数伊藤公式,得到永久美式期权价值所满足的偏微分方程.其次,由永久美式期权的实施条件与看涨-看跌期权的对称关系,获得看涨与看跌期权的定价公式与最佳实施边界.最后,利用平安银行的日收盘价对标的资产进行实证分析,结果表明:用混合高斯模型模拟出的股票价格与真实股票价格比较接近,能够反映股票的整体走势.
In this paper, the pricing model for American option of stock paying continuous dividend is constructed under mixed Gaussian model environment. The partial differential equation is obtained for the value of perpetual American option by self-financing strategy and fractional It?o formula. Secondly,the pricing formula and optional exercise boundary of call and put are obtained by the option application condition and symmetric relation of call and put option. Finally, taking the Ping An bank stock closing price as an example, the result shows that using the mixed Gaussian model for simulating stock price is close to the real stock price, which can reflect the overall trend of the stock.
作者
郭精军
程志勇
GUO Jingjun;CHENG Zhiyong(School of Statistics, Lanzhou University of Finance and Economics, Lanzhou 730020, Chin)
出处
《应用数学》
CSCD
北大核心
2018年第2期250-256,共7页
Mathematica Applicata
基金
国家自然科学基金项目(71561017)
甘肃省科技计划项目(1606RJZA041
1606RJZA038)
关键词
次分数布朗运动
永久美式期权
期权定价
蒙特卡罗模拟
Subfractional Brownian motion
Perpetual American option
Option pricing
Monte Carlo simulation