期刊文献+

基于SVD的本征正交分解算法在偏微分方程中的降阶数值模式研究 被引量:3

The Study About Reduced Numerical Model of Proper Orthogonal Decomposition Used in Partial Differential Equation Based on SVD
下载PDF
导出
摘要 本文分别论述全矩阵、距平矩阵以及归一化矩阵的奇异正交分解(Singular Value Decomposition,简称SVD)算法的理论基础,推导了任意矩阵的SVD分解过程并且在任意矩阵SVD分解的基础上,给出两种本征正交分解(Proper Orthogonal Decomposition,简称POD)算法,将POD算法与Galerkin投影相结合可以将偏微分方程的高维或者无穷维解投影到POD模态构成的完备空间中进行降阶模拟,进而得到高度近似的低维解,比较用不同阶POD模态降阶前后解的稳定性及精确性.最后给出数值算例分析两种本征正交分解算法的优劣性及适用性. Foundations of singular value decomposition theory(SVD) about three kinds of matrixes:the common matrix, matrix anomaly and the standard normalized matrix were discussed respectively.The SVD process of arbitrary matrix was deduced. Based on the SVD of arbitrary matrix two proper orthogonal decomposition(POD) algorithms were given. The POD algorithm combined with Galerkin projection the higher dimensional or infinite dimensional solution of partial differential equation can be projected into the complete space which was constituted by POD modes. The low dimensional solution will be obtained and the low dimensional solution will be compared with the solution of partial differential equation. The stability and accuracy of the POD algorithm also will be compared between the solution of partial differential equation and the low dimensional solutions obtained by different POD modes. At last some numerical examples were given to show the pros and cons and its applicability of two kinds of POD algorithms.
作者 曹艳华 张静静 CAO Yanhua;ZHANG Jingjing(School of Science, East China Jiaotong University, Nanchang 330013,China)
出处 《应用数学》 CSCD 北大核心 2018年第2期305-314,共10页 Mathematica Applicata
基金 国家自然科学基金(11461026) 国家自然科学基金(11661036)
关键词 奇异值分解 本征正交分解 偏微分方程 降阶数值模式 Singular value decomposition Proper orthogonal decomposition Partial differential equation Reduced numerical model
  • 相关文献

参考文献2

二级参考文献15

  • 1KAMAKOTI R, SHYY W. Fluid-structure interac- tion for aeroelastic applications [J]. Progress in Aero- space Sciences, 2004, 40(8): 535-558.
  • 2BENDIKSEN O, SEBER G. Fluid-structure interactions with both structural and fluid nonlinearities [J]. Journal of Sound and Vibration, 2008, 315(3) : 664-684.
  • 3REGA G, TROGER H. Dimension reduction of dy- namical systems., methods, models, applications [J]. Nonlinear Dynamics, 2005, 41(1) : 1-15.
  • 4GERHARD J, PASTOOR M, KING R. Model-based control of vortex shedding using low-dimensional Galerkin models, AIAA paper 2003-4262 [R]. Re- ston, VA, USA: AIAA, 2003.
  • 5AHUJA S, ROWLEY C, KEVREKIDIS I. Low- dimensional models for control of leading-edge vorti- ces: equilibria and linearized models [C]/// Proceed- ings of 45th Aerospace Sciences Meeting and Exhibit. Reno, NV, USA: AIAA, 2007: 1-12.
  • 6NOACK B, AFANASIEV K, MORZYNSKI M. A hierarchy of low-dimensional models for the transient and post-transient cylinder wake [J]. Journal of Fluid Mechanics, 2003, 497: 335-363.
  • 7SENGUPTA T K, SINGH N, SUMAN V. Dynami-cal system approach to instability of flow past a circu- lar cylinder [J]. Journal of Fluid Mechanics, 2010, 656: 82-115.
  • 8HOLMES P, LUMLEY J, BERKOOZ G. Turbu- lence, coherent structures, dynamical systems and symmetry [M]. Cambridge, UK: Cambridge Univer-sity Press, 1998: 86-127.
  • 9李庆扬 莫孜中 祁立群.非线性方程组的数值解法[M].北京:科学出版社,1999..
  • 10高夫征,芮洪兴.求解线性Sobolev方程的分裂型最小二乘混合元方法[J].计算数学,2008,30(3):269-282. 被引量:10

共引文献11

同被引文献31

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部