期刊文献+

基于地表移动矢量的概率积分法参数反演方法 被引量:22

Parameter inversion of probability integration method using surface movement vector
下载PDF
导出
摘要 为解决概率积分法参数反演时计算不稳定、初值依赖、优化指标难以选取、非矩形工作面,多工作面影响下难以反演的问题,提出采用地表空间移动矢量反演概率积分法参数的遗传算法模型。该模型采用地表移动矢量的误差平方和最小作为计算指标,以遗传算法作为参数优化的核心算法进行概率积分法参数反演。用空间移动矢量指标可以解决分别采用下沉、水平移动监测值反演结果不相同、精度难以估算的难题。矢量反演模型对观测站设置没有特别严格的要求,降低了设站不当引起的计算误差。为解决遗传算法多次计算结果不同的问题,建立了组合预测计算方法,依据中误差加权均值得到唯一的计算结果。基于矢量移动值的反演模型,避免了传统计算方法的多个缺陷,计算效率高、易于与已有开采沉陷预计程序结合,为解决非矩形、多工作面地表移动观测站参数反演的工程应用问题提供了新的解决思路和计算方法。 The surface movement vector is used to solve the problems of instability, initial value dependence, difficult selection of optimization index, non-rectangular panel and difficult invesion of multi-panel for parameter calculation of probability integral method(PIM). The model uses the minimum squared error of surface movement vectors as the index and the genetic algorithm(GA) as the core optimization inversion algorithm to calculate PIM parameters. Using the surface movement vector can solve the problem of different results obtained when using the mining subsidence and horizontal movement separately, and assess the accuracy of the results. GA can solve the parameter inversion problem for non-rectangular working panel and multi-panel of surface movement observation station. The vector inversion model has no particularly stringent requirements for observation station setting and it reduces the calculation error caused by improper design observation station. To solve the problem of different results for using GA repeatedly, a combination forecasting method of weighted average results is established, which can obtain only one result at the same time so as to improve the reliability and stability of the model. The surface vector GA inversion model avoids a number of shortcomings of the traditional methods, and it is computationally efficient and easy to combine with the existing mining subsidence prediction program. The research results provide a new way to solve the engineering problem of parameter inversion for mining subsidence observation station influenced by non-rectangular multi-panel.
作者 李培现 万昊明 许月 袁雪琪 赵银鹏 LI Pei-xian;WAN Hao-ming;XU Yue;YUAN Xue-qi;ZHAO Yin-peng(College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2018年第4期767-776,共10页 Chinese Journal of Geotechnical Engineering
基金 国家大学生创新训练项目(C201602003) 煤炭资源与安全开采国家重点实验室大学生科技创新计划项目(SKLCRSM16DCB03)
关键词 开采沉陷 概率积分法 地表移动矢量 遗传算法 mining subsidence probability integration method surface movement vector genetic algorithm
  • 相关文献

参考文献10

二级参考文献54

共引文献261

同被引文献242

引证文献22

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部