期刊文献+

Banach空间上有限时滞退化微分方程的适定性 被引量:1

The Well-Posedness of Degenerate Differential Equations with Finite Delay in Banach Spaces
下载PDF
导出
摘要 该文在Lebesgue-Bochner空间L^p(T,X)和周期Besov空间B_(p,q)~s(T,X)上研究二阶有限时滞退化微分方程:(Mu′)′(t)=Au(t)+Bu′(t)+Fu_t+f(t)(t∈T:=[0,2π]),u(0)=u(2π),(Mu′)(0)=(Mu′)(2π)的适定性.利用向量值函数空间上的算子值傅里叶乘子定理,文中给出上述方程具有适定性的充要条件. In this paper, we study the well-posedness of the second order degenerate differential equation: [Mu']'(t) = Au(t) + Bu'(t) + Fur+ f(t) (t∈ T := [0, 27r]) with periodic boundary conditions u(0) = u(2π), (Mu')(0) = (Mu1)(2π), in Lebesgue-Bochner spaces L^P(T,X) and periodic Besov spaces Bp,q^s (T, X). Using operator-valued Fourier multipliers theorems in vector- valued function spaces, we give necessary and sufficient conditions for the well-posedness of above equation.
作者 蔡钢 Cai Gang(School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2018年第2期264-275,共12页 Acta Mathematica Scientia
基金 国家自然科学基金(11401063 11771063) 重庆市自然科学基金(cstc2017jcyjAX0006) 重庆市教委项目(KJ1703041) 重庆市高等学校青年骨干教师资助计划(020603011714) 重庆师范大学青年拔尖人才计划(02030307-00024)~~
关键词 Lebesgue-Bochner空间 BESOV空间 傅里叶乘子 适定性 Lebesgue-Bochner spaces Besov spaces Fourier multipliers Well-posedness.
  • 相关文献

参考文献3

二级参考文献4

共引文献7

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部