摘要
针对网络中传感器存在多故障模态的现象,利用一组随机变量加以描述,建立带有随机变量的滤波误差系统。通过构建时滞依赖的Lyapunov-Krasovskii泛函,根据Lyapunov稳定性理论和积分不等式方法,得到保证滤波误差系统均方渐近稳定且满足L_1性能的判定准则,并进一步给出滤波器参数的求解方法。最后,用数值仿真验证了所设计滤波器的有效性。
Considering the multiple sensor fault modes in the network, a set of stochastic variables were used to describe sensor faults and the filtering error system with stochastic variables was established. By constructing a delay-dependent Lyapunov-Krasovskii function and according to Lyapunov theory and the integral inequality method, the L1 performance criterion which guaranteeing the mean-square asymptotic stability of the filtering error system was formulated, and furthermore, the method for obtaining filter parameters was given. Numerical simulation verifies the effectiveness of this method proposed.
作者
李艳辉
李玉龙
LI Yan-hui;LI Yu-long(College of Electrical Engineering and Information, Northeast Petroleum Universit)
出处
《化工自动化及仪表》
CAS
2018年第4期273-278,共6页
Control and Instruments in Chemical Industry
基金
国家自然科学基金项目(61673102)
东北石油大学研究生创新科研项目(YJSCX2017-030NEPU)
关键词
分布时滞系统
传感器故障模态
L1滤波
随机变量
时滞依赖
distributed delay system, sensor fault modes, L1 filtering, stochastic variables, delay-dependent