摘要
Data-driven technique is a powerful and efficient tool for guiding materials design,which could supply as an alternative to trial-and-error experiments.In order to accelerate composition design for low-cost rare-earth permanent magnets,an approach using composition to estimate coercivity(H(cj)) and maximum magnetic energy product(BH)(max) via machine learning has been applied to(PrNd–La–Ce)2Fe(14)B melt-spun magnets.A set of machine learning algorithms are employed to build property prediction models,in which the algorithm of Gradient Boosted Regression Trees is the best for predicting both H(cj) and(BH)(max),with high accuracies of R^2= 0.88 and 0.89,respectively.Using the best models,predicted datasets of H(cj) or(BH)max in high-dimensional composition space can be constructed.Exploring these virtual datasets could provide efficient guidance for materials design,and facilitate the composition optimization of 2:14:1 structure melt-spun magnets.Combined with magnets' cost performance,the candidate cost-effective magnets with targeted properties can also be accurately and rapidly identified.Such data analytics,which involves property prediction and composition design,is of great time-saving and economical significance for the development and application of La Ce-containing melt-spun magnets.
Data-driven technique is a powerful and efficient tool for guiding materials design,which could supply as an alternative to trial-and-error experiments.In order to accelerate composition design for low-cost rare-earth permanent magnets,an approach using composition to estimate coercivity(H(cj)) and maximum magnetic energy product(BH)(max) via machine learning has been applied to(PrNd–La–Ce)2Fe(14)B melt-spun magnets.A set of machine learning algorithms are employed to build property prediction models,in which the algorithm of Gradient Boosted Regression Trees is the best for predicting both H(cj) and(BH)(max),with high accuracies of R^2= 0.88 and 0.89,respectively.Using the best models,predicted datasets of H(cj) or(BH)max in high-dimensional composition space can be constructed.Exploring these virtual datasets could provide efficient guidance for materials design,and facilitate the composition optimization of 2:14:1 structure melt-spun magnets.Combined with magnets' cost performance,the candidate cost-effective magnets with targeted properties can also be accurately and rapidly identified.Such data analytics,which involves property prediction and composition design,is of great time-saving and economical significance for the development and application of La Ce-containing melt-spun magnets.
基金
Project supported by the National Basic Research Program of China(Grant No.2014CB643702)
the National Natural Science Foundation of China(Grant No.51590880)
the Knowledge Innovation Project of the Chinese Academy of Sciences(Grant No.KJZD-EW-M05)
the National Key Research and Development Program of China(Grant No.2016YFB0700903)