摘要
An improved vertical power double-diffused metal–oxide–semiconductor(DMOS) device with a p-region(P1) and high-κ insulator vertical double-diffusion metal–oxide–semiconductor(HKP-VDMOS) is proposed to achieve a better performance on breakdown voltage(BV)/specific on-resistance(Ron,sp) than conventional VDMOS with a high-κ insulator(CHK-VDMOS).The main mechanism is that with the introduction of the P-region,an extra electric field peak is generated in the drift region of HKP-VDMOS to enhance the breakdown voltage.Due to the assisted depletion effect of this p-region,the specific on-resistance of the device could be reduced because of the high doping density of the N-type drift region.Meanwhile,based on the superposition of the depleted charges,a closed-form model for electric field/breakdown voltage is generally derived,which is in good agreement with the simulation result within 10% of error.An HKP-VDMOS device with a breakdown voltage of 600 V,a reduced specific on-resistance of 11.5 Ωm·cm^2 and a figure of merit(FOM)(BV^2/Ron,sp)of 31.2 MW·cm^-2 shows a substantial improvement compared with the CHK-VDMOS device.
An improved vertical power double-diffused metal–oxide–semiconductor(DMOS) device with a p-region(P1) and high-κ insulator vertical double-diffusion metal–oxide–semiconductor(HKP-VDMOS) is proposed to achieve a better performance on breakdown voltage(BV)/specific on-resistance(Ron,sp) than conventional VDMOS with a high-κ insulator(CHK-VDMOS).The main mechanism is that with the introduction of the P-region,an extra electric field peak is generated in the drift region of HKP-VDMOS to enhance the breakdown voltage.Due to the assisted depletion effect of this p-region,the specific on-resistance of the device could be reduced because of the high doping density of the N-type drift region.Meanwhile,based on the superposition of the depleted charges,a closed-form model for electric field/breakdown voltage is generally derived,which is in good agreement with the simulation result within 10% of error.An HKP-VDMOS device with a breakdown voltage of 600 V,a reduced specific on-resistance of 11.5 Ωm·cm^2 and a figure of merit(FOM)(BV^2/Ron,sp)of 31.2 MW·cm^-2 shows a substantial improvement compared with the CHK-VDMOS device.
作者
Xue Chen
Zhi-Gang Wang
Xi Wang
James B Kuo
陈雪;汪志刚;王喜;James B Kuo(School of Information Science and Technology, Southwest Jiao Tong University, Chengdu 611756, China;"National" Taiwan University, Talpei, China)
基金
Project supported by the National Natural Science Foundation of China(Grant No.61404110)
the National Higher-education Institution General Research and Development Project,China(Grant No.2682014CX097)