期刊文献+

基于即时学习的接收灵敏度测量方法 被引量:1

Receiver sensitivity measurement method based on lazy learning
下载PDF
导出
摘要 接收灵敏度是无线通信系统中非常重要的参数之一。然而,虽然无线技术的发展迅速,接收灵敏度的测量却依然使用着传统的基于穷举法的测量方式。这种测量方式依赖固有的系统模型,不但测量效率低,而且由于使用固定步长,测量精度也无法保证。针对传统测量方法的缺陷,本文提出一种不依赖模型,只基于实时测量数据的快速接收灵敏度测量方法,这种方法依靠系统实时的输入和输出数据,在保证测量精度的同时进一步改善测量速度。 In wireless communication systems, receiver sensitivity is one of the most importantparameters. However, even though the wireless technology has got a progress with marvelous rapidity,the traditional exhaustive search is still being used to identify the receiver sensitivity. Such an exhaustivesearch scheme depends on the system model, it is neither efficient, nor accurate due to the fixedstepsize. To solve the problems in traditional method, we introduce a new fast sensitivity measurementmethod, which depends merely on the real-time input and output measurement data of the system. It canfurther speed up the measurement of the receiver sensitivity while satisfying the accuracy requirement.
作者 朱明鹤 ZHU Ming-he(Chinese Academy of Sciences, Shanghai Institute of Microsystem & Information Technology, Shanghai 200050, China;ShanghaiTech University, School of Information Science & Technology, Shanghai 201210, China;University of Chinese Academy of Sciences, Beijing 100049, China)
出处 《电子设计工程》 2018年第8期102-105,109,共5页 Electronic Design Engineering
关键词 即时学习 迭代最小二乘 接收灵敏度 无线通信 误包率 信号强度 lazy learning recursive least-square algorithm receiver sensitivity wireless communica- tion packet error rate signal strength
  • 相关文献

参考文献2

二级参考文献16

  • 1张军,梁建国,邵晓巍,毕贞法.基于LMI约束优化的再入飞行器预测控制[J].动力学与控制学报,2008,6(4):372-376. 被引量:3
  • 2潘天红,李少远.基于即时学习的非线性系统优化控制[J].控制与决策,2007,22(1):25-29. 被引量:11
  • 3Atkeson C G,Moore A W,Schaal S.Locally weighted learning for control[J].Artificial Intelligence Review,1997,11(1):75-113.
  • 4Rhodes C,Morari M,Tsimring L S,et al.Data-based control trajectory planning for nonlinear systems[J].Physical Review E,1997,56(3):2398-2406.
  • 5Arif M,Ishihara T,Inooka H.Incorporation of experience in iterative learning controllers using locally weighted learning[J].Automatica,2001,6(37):881-888.
  • 6Bertolissi E,Birattari M,Bontempi G,et al.Data-driven techniques for direct adaptive control:The lazy and the fuzzy approaches[J].Fuzzy Sets and Systems,2002,128(1):3-14.
  • 7Bontempi G,Birattari M,Bersini H.Lazy learning for local modeling and control design[J].Int J Control,1999,72(7/8):643-658.
  • 8潘天红,李少远,王昕.基于即时学习的非线性系统多模型建模方法[C].第二十四届中国控制会议论文集.广州:华南理工大学出版社,2005:268-273.
  • 9Bontempi G.Local learning techniques for modeling prediction and control[D].Bruxelles:IRIDIA-Universite Libre de Bruxelles,1999.
  • 10Cheng Cheng,Chiu Min-Sen.A new data-based methodology for nonlinear process modeling[J].Chemical Engineering Science,2004,13(59):2801-2810.

共引文献14

同被引文献17

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部