摘要
证明了a=3时,Gvozdjak猜想成立.即路Pn存在一个(a,b;n)-优美标号,当且仅当整数a,b,n满足:(1)b-a与n(n+1)/2有相同的奇偶性;(2)0<|b-a|≤n+1/2;(3)n/2≤a+b≤3n/2.在a=3时,结论成立.
The following conjecture is posed by Gvozdjak:An (a,b;n) -graceful labeling of P n exists if and only if the integers a,b,n satisfy:(1) b-a has the same parity as [SX(]n(n+1)[]2[SX)]; (2)0〈|b-a|≤[SX(]n[]2[SX)]; (3)[SX(]n[]2[SX)]≤a+b≤[SX(]3n[]2[SX)]. The conjecture is true when a =3.
作者
王颂
周霞
张庆成
WANG Song;ZHOU Xia;ZHANC Qing-cheng(School of Mathematics and Statistics, Northeast Normal University;Jilin Provincial Experimental School, Changchun 130021, China)
出处
《海南热带海洋学院学报》
2018年第2期38-43,共6页
Journal of Hainan Tropical Ocean University
基金
国家自然科学基金项目(10726062)