期刊文献+

基于大量ChIP数据集的果蝇顺式调控模块的从头预测

De novo prediction of cis-regulatory modules in D. melanogaster based on a large number of ChIP datasets
下载PDF
导出
摘要 通过整合果蝇已有的ChIP数据集,采用模体发现算法FisherNet及高性能并行的模体聚类算法CLIMP对果蝇的顺式调控模块进行从头预测.与已知的顺式调控模块进行比对分析,结果表明该方法预测结果覆盖了数据集中已知顺式调控模块的82.93%,证明该方法具有一定的普适性.与较新的DePCRM算法进行比较,结果表明本算法在从头预测顺式调控模块上速度更快、精度更高. The ChIP datasets of D. melanogaster are integrated and used to predict the cis-regulatory modules by employing the motif discovery algorithm Fisher Net and the motif clustering algorithm CLIMP. By comparing with the known cis-regulatory modules,the prediction results recover 82.93% of the known cis-regulatory modules,which shows that the method has a certain universality. Comparing with the DePCRM algorithm,it is found that this algorithm is faster and more accurate than DePCRM for predicting the cis-regulatory modules.
作者 李婷 张少强 LI Ting;ZHANG Shaoqiang(College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, Chin)
出处 《天津师范大学学报(自然科学版)》 CAS 北大核心 2018年第2期73-76,共4页 Journal of Tianjin Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(61572358) 天津市自然科学基金资助项目(16JCYBJC23600)
关键词 ChIP数据集 果蝇 顺式调控模块 模体 FisherNet CLIMP ChIP datasets D. melanogaster cis-regulatory module (CRM) motif FisherNet CLIMP
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部