期刊文献+

人工神经网络耦合遗传算法优化细菌纤维素发酵培养基 被引量:4

Bacterial cellulose fermentation medium optimized by artificial neural network combined with genetic algorithm
下载PDF
导出
摘要 细菌纤维素作为新型生物材料,已成为生物材料研究热点,但产量低限制了其进一步应用。选择合适的优化策略是实现产量提高的一个重要方法。本文在正交和均匀设计实验传统建模方法的基础上,运用人工神经网络模型结合遗传算法优化汉氏葡糖醋杆菌(Komagataeibacter hansenii HDM1-3)产细菌纤维素发酵培养基。结果表明,最佳培养基配方为葡萄糖3.98%、牛肉膏0.34%、酵母膏0.19%、磷酸氢二钠0.22%、磷酸氢二钾0.46%、乙醇2.23%。在此配方下,细菌纤维素产量最高达到2.87 g·L^(-1),与优化前培养基的产量相比提高了1.18倍。本研究优化了细菌纤维素发酵培养基参数,为细菌纤维素高产发酵及工业化推广应用提供了依据。 Bacterial cellulose as a new biomaterial has become a research hotspot,however,the low yield limited its application. Apparently,suitable optimization strategy is an important method to improve the yield. Here artificial neural networks combined with genetic algorithms were employed to optimize the fermentation medium based on traditional modeling approach of the orthogonal uniform design. The results demonstrated that the optimum formula is composed of glucose 3.98%,beef extract 0.34%,yeast extract 0.19%,disodium hydrogen phosphate 0.22%,dipotassium phosphate 0.46%,and ethanol 2.23%. With the optimal formula,the yield of bacterial cellulose was 2.87 g·L-1,1.18 times higher than that before optimization. In this research,the parameters of the fermentation medium were optimized to provide thebasis for high yield fermentation and application.
作者 雷虹 李元敬 江伟 雷青云 李丽娅 李文辉 曾伟民 LEI Hong;LI Yuanjing;JIANG Wei;LEI Qingyun;LI Liya;LI Wenhui;ZENG Weimin(College of Life Seienee, Heilongjiang University, Harbin 150080, China;College of Life Seienees and Oeeanography, Shenzhen University, Shenzhen 518061, China;Offiee of Campus Management, Heilongjiang University, Harbin 150080, China;Culture and Media Studies, Hezhou University, Hezhou 542800, China)
出处 《黑龙江大学自然科学学报》 CAS 2018年第1期85-93,共9页 Journal of Natural Science of Heilongjiang University
基金 黑龙江省教育厅科学技术研究面上项目(12541625) 黑龙江省自然科学基金资助项目(C2015023)
关键词 细菌纤维素 汉氏葡糖醋杆菌 发酵 人工神经网络 遗传算法 bacterial cellulose Komagataeibacter hanseii fermentation artificial neural network genetic algorithm
分类号 O936 [理学]
  • 相关文献

同被引文献33

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部