期刊文献+

单调迭代结合虚拟区域法求解非线性障碍问题 被引量:5

Monotone Iterations Combined With Fictitious Domain Methods for Numerical Solution of Nonlinear Obstacle Problems
下载PDF
导出
摘要 讨论了二阶半线性椭圆方程障碍问题的数值求解问题.用单调迭代算法求解障碍问题,并用改进的虚拟区域法求解相关的不规则区域上具有Dirichlet边界条件的椭圆方程.在计算过程中,传统的有限元离散会导致用扩展区域规则网格计算不规则物体边界上积分的困难.为了克服此困难,给出了一种新的基于有限差分的算法,从而使得偏微分快速算法可用.算法结构简单,易于编程实现.对有扩散和增长障碍的logistic人口模型数值模拟说明算法可行且高效. The numerical solution of obstacle problems with 2 nd-order semilinear elliptic partial differential equations( PDEs) was addressed. The nonlinear obstacle problem was solved with the monotone iteration method,and the adjoint elliptic differential equations with the Dirichlet boundary conditions on irregular domains were solved with the fictitious domain method. In the calculation process,the conventional finite element discretization resulted in the trouble of computing integrals on the irregular body boundaries with the regular mesh of the extended domain. To overcome this difficulty,a new algorithm was designed based on the finite difference method allowing the use of fast solvers for PDEs. The proposed algorithm has a simple structure and is easily programmable. The numerical simulation of a steady state problem of the logistic population model with diffusion and obstacle to growth shows that the proposed method is feasible and efficient.
作者 饶玲 RAO Ling(Department of Mathematics, School of Science, Nanjing University of Science and Technology, Nanjing 210094, P.R. China)
出处 《应用数学和力学》 CSCD 北大核心 2018年第4期485-492,共8页 Applied Mathematics and Mechanics
关键词 虚拟区域法 非线性障碍问题 变分不等式 fictitious domain method nonlinear obstacle problem variational inequality
  • 相关文献

参考文献3

二级参考文献22

  • 1曾金平,李董辉.对称双正型线性互补问题的多重网格迭代解收敛性理论[J].计算数学,1994,16(1):25-30. 被引量:6
  • 2郑铁生,李立,许庆余.一类椭圆型变分不等式离散问题的迭代算法[J].应用数学和力学,1995,16(4):329-335. 被引量:20
  • 3余颖禾,孙鹰,郭小明.具有自由边界的二维渗流问题[J].应用数学和力学,1996,17(6):523-527. 被引量:4
  • 4Zhou S Z,J Comput Math,1990年,8卷,178页
  • 5Zhou S Z,J Comput Math,1983年,1卷,143页
  • 6Lacy S J, Prevost J H. Flow through porous media: a procedure for locating the free surface[ J].International Journal for Numerical and Analytical Methods in Geomechanics , 1987 ,11(6) :585-601.
  • 7Borja R I, Kishnani S S. On the solution of elliptic free boundary problems via Newton' s method [J]. Computer Methods in Applied Mechanics and Engineering, 1991,88(2) :341-361.
  • 8Oden J T, Kikuchi N. Recent advances: theory of variational inequalities with applications to problems of flow through porous media[ J]. International Journal of Engineering Science, 1980,18(10):1173-1284.
  • 9Westbrook D R. Analysis of inequality and residual flow procedures and an iterative scheme for free surface seepage[J]. Internal Journal for Numerical Methods in Engineering, 1985,21(10): 1971-1802.
  • 10Chipot M. Variational Inequalities and Flow in Porous Media [M]. New York: Springer-Verlag,1984.

共引文献31

同被引文献23

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部