期刊文献+

基于遗传变异特性的异类多种群蚁群优化算法研究

Heterogeneous multiple ant colonies algorithm based on genetic mutation features
下载PDF
导出
摘要 遗传变异特性的异类多种群蚁群优化算法由多种不同寻优机制的蚂蚁群体构成,不同群体之间协同进化优势互补。遗传变异思想的融入,使之能在局部和全局之间达到平衡,从而保有跳离局部最优的能力。在不同数据类型TSP问题上的仿真实验表明该算法具有较好的寻优能力,对某些问题实例具有明显优势。 Based on genetic mutation features, a Heterogeneous Multiple Ant Colonies Algorithm is proposed. This algorithm introduces more than one type of ant colonies, each with different optimization mechanisms and complementary advantages while in the co-evolution. In order to find a balance between local and global search, the algo- rithm incorporates the idea of genetic mutation, which can help to skip the local optimum. Some simulations for TSP problems with different data types show that the proposed algorithm has better optimization capabilities, and has significant advantages in some instances.
作者 魏欣 马良 张惠珍 WEI Xin;MA Liang(Business School, University of Shanghai for Science ZHANG Hui-zhen and Technology, Shanghai 200093, Chin)
出处 《科技与管理》 2018年第1期58-62,共5页 Science-Technology and Management
基金 国家自然科学基金项目(71401106) 教育部人文社科规划基金项目(16YJA630037)
关键词 蚁群算法 多种群 遗传变异 ant colony algorithm multiple colonies genetic mutation
  • 相关文献

参考文献4

二级参考文献46

  • 1孙宏,詹士昌,金柏林.自适应进化的蚁群算法及其仿真研究[J].杭州师范学院学报(自然科学版),2003,2(5):31-34. 被引量:4
  • 2王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 3Dorigo M, Maniezzo V, Colorni A. Positive Feedback as a Search Strategy[D]. Philadelphia, USA: The Pennsylvania State University, 1991.
  • 4Dorigo M. Optimization, Learning and Natural Algorithms[D]. Philadelphia, USA: The Pennsylvania State University, 1992.
  • 5Dorigo M, Gambardella L M. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem[D].Philadelphia, USA: The Pennsylvania State University, 1996.
  • 6Stutzle T. Parallelization Strategies for Ant Colony Optimi- zation[M]. Berlin, Germany: Springer-Verlag, 1998.
  • 7Ellabib I, Basir O A, Calamai P. A New Ant Colony System Updating Strategy for Vehicle Routing Problem with Time windows[C]//Proc. of the 5th Metaheuristics International Conference. Kyoto, Japan: [s. n.], 2003: 25-28.
  • 8Ellabib I, Calamai P, Basir O. Exchange Strategies for Multiple Ant Colony System[J]. Information Sciences, 2007, 177(5): 1248- 1264.
  • 9Talbi E G, Roux O, Fonlupt C, et al. Parallel Ant Colonies for Combinatorial Optimization Problems[C]//Proc. of Conf. on Parallel and Distributed Processing. Berlin, Germany: Springer, 1999: 239-247.
  • 10Middendorf M, Reischle F, Schmeck H. Multi Colony Ant Algorithms[J]. Journal of Heuristics, 2002, 8(3): 305-320.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部