期刊文献+

Delineation of homogeneous forest patches using combination of field measurements and LiDAR point clouds as a reliable reference for evaluation of low resolution global satellite data 被引量:2

Delineation of homogeneous forest patches using combination of field measurements and LiDAR point clouds as a reliable reference for evaluation of low resolution global satellite data
下载PDF
导出
摘要 Backgrounds: There are many satellite systems acquiring environmental data on the world. Acquired global remote sensing datasets require ground reference data in order to calibrate them and assess their quality. Regarding calibration and validation of these datasets with broad geographical extents, it is essential to register zones which might be considered as Homogeneous Patches (HPs). Such patches enable an optimal calibration of satellite data/sensors, and what is more important is an analysis of components which significantly influence electro-magnetic signals registered by satellite sensors. Methods: We proposed two structurally different methods to identify HPs: predefined thresholding-based one (static one), and statistical thresholding-based technique (dynamic one). In the first method, 3 different thresholds were used: 5%, 10%, and 20%. Next, it was aimed to assess how delineated HPs were spatially matched to satellite data with coarse spatial resolution. Selected cell sizes were 25, 50, 100, 250, and 500 m. The number of particular grid cells which almost entirely fell into registered HPs was counted (leaving 2% cell area tolerance level). This procedure was executed separately for each variant and selected structural variables, as well as for their intersection parts. Results: The results of this investigation revealed that ALS data might have the potential in the identification of HPs of forest stands. We showed that different ALS based variables and thresholds of HPs definition influenced areas which can be treated as similar and homogeneous. We proved that integration of more than one structural variable limits size of the HPs, in contrast, visual interpretation revealed that inside such patches vegetation structure is more constant. Conclusions: We concluded that ALS data can be used as a potential source of data to "enlarge" small ground sample plots and to be used for evaluation and calibration of remotely sensed datasets provided by global systems with coarse spatial resolutions. Backgrounds: There are many satellite systems acquiring environmental data on the world. Acquired global remote sensing datasets require ground reference data in order to calibrate them and assess their quality. Regarding calibration and validation of these datasets with broad geographical extents, it is essential to register zones which might be considered as Homogeneous Patches (HPs). Such patches enable an optimal calibration of satellite data/sensors, and what is more important is an analysis of components which significantly influence electro-magnetic signals registered by satellite sensors. Methods: We proposed two structurally different methods to identify HPs: predefined thresholding-based one (static one), and statistical thresholding-based technique (dynamic one). In the first method, 3 different thresholds were used: 5%, 10%, and 20%. Next, it was aimed to assess how delineated HPs were spatially matched to satellite data with coarse spatial resolution. Selected cell sizes were 25, 50, 100, 250, and 500 m. The number of particular grid cells which almost entirely fell into registered HPs was counted (leaving 2% cell area tolerance level). This procedure was executed separately for each variant and selected structural variables, as well as for their intersection parts. Results: The results of this investigation revealed that ALS data might have the potential in the identification of HPs of forest stands. We showed that different ALS based variables and thresholds of HPs definition influenced areas which can be treated as similar and homogeneous. We proved that integration of more than one structural variable limits size of the HPs, in contrast, visual interpretation revealed that inside such patches vegetation structure is more constant. Conclusions: We concluded that ALS data can be used as a potential source of data to "enlarge" small ground sample plots and to be used for evaluation and calibration of remotely sensed datasets provided by global systems with coarse spatial resolutions.
作者 krzysztof stereńczak marek lisańczuk yousef erfanifard Krzysztof Sterehczak;Marek Lisanczuk;Yousef Erfanifard(Department of Forest Resources Management, Forest Research Institute, Sekocin Stary, 3 Braci Lesnej St, 05-090 Raszyn, Polan)
出处 《Forest Ecosystems》 SCIE CSCD 2018年第1期1-12,共12页 森林生态系统(英文版)
基金 supported by the project REMBIOFOR(Remote sensing based assessment of woody biomass and carbon storage in forests) supported by The National Centre for Research and Development under BIOSTRATEG program,agreement no.BIOSTRATEG1/267755/4/NCBR/2015 invented under the DUE GLOBBIOMASS project(contract 4,000,113,100/14/l-NB)
关键词 Forest structure STRATIFICATION Global satellite missions Forest structure, Stratification, Global satellite missions
  • 相关文献

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部