期刊文献+

Key drivers of ecosystem recovery after disturbance in a neotropical forest Long-term lessons from the Paracou experiment, French Guiana 被引量:1

Key drivers of ecosystem recovery after disturbance in a neotropical forest Long-term lessons from the Paracou experiment, French Guiana
下载PDF
导出
摘要 Background: Natural disturbance is a fundamental component of the functioning of tropical rainforests let to natural dynamics, with tree mortality the driving force of forest renewal. With ongoing global (i.e. land-use and climate) changes, tropical forests are currently facing deep and rapid modifications in disturbance regimes that may hamper their recovering capacity so that developing robust predictive model able to predict ecosystem resilience and recovery becomes of primary importance for decision-making: (i) Do regenerating forests recover faster than mature forests given the same level of disturbance? (ii) is the local topography an important predictor of the post-disturbance forest trajectories? (iii) Is the community functional composition, assessed with community weighted-mean functional traits, a good predictor of carbon stock recovery? (iv) How important is the climate stress (seasonal drought and/or soil water saturation) in shaping the recovery trajectory? Methods: Paracou is a large scale forest disturbance experiment set up in 1984 with nine 6.25 ha plots spanning on a large disturbance gradient where 15 to 60% of the initial forest ecosystem biomass were removed. More than 70,000 trees belonging to ca. 700 tree species have then been censused every 2 years up today. Using this unique dataset, we aim at deciphering the endogenous (forest structure and composition) and exogenous (local environment and climate stress) drivers of ecosystem recovery in time. To do so, we disentangle carbon recovery into demographic processes (recruitment, growth, mortality fluxes) and cohorts (recruited trees, survivors). Results: Variations in the pre-disturbance forest structure or in local environment do not shape significantly the ecosystem recovery rates. Variations in the pre-disturbance forest composition and in the post-disturbance climate significantly change the forest recovery trajectory. Pioneer-rich forests have slower recovery rates than assemblages of late-successional species. Soil water saturation during the wet season strongly impedes ecosystem recovery but not seasonal drought. From a sensitivity analysis, we highlight the pre-disturbance forest composition and the post-disturbance climate conditions as the primary factors controlling the recovery trajectory. Conclusions" Highly-disturbed forests and secondary forests because they are composed of a lot of pioneer species will be less able to cope with new disturbance. In the context of increasing tree mortality due to both (i) severe droughts imputable to climate change and (ii) human-induced perturbations, tropical forest management should focus on reducing disturbances by developing Reduced Impact Logging techniques. Background: Natural disturbance is a fundamental component of the functioning of tropical rainforests let to natural dynamics, with tree mortality the driving force of forest renewal. With ongoing global (i.e. land-use and climate) changes, tropical forests are currently facing deep and rapid modifications in disturbance regimes that may hamper their recovering capacity so that developing robust predictive model able to predict ecosystem resilience and recovery becomes of primary importance for decision-making: (i) Do regenerating forests recover faster than mature forests given the same level of disturbance? (ii) is the local topography an important predictor of the post-disturbance forest trajectories? (iii) Is the community functional composition, assessed with community weighted-mean functional traits, a good predictor of carbon stock recovery? (iv) How important is the climate stress (seasonal drought and/or soil water saturation) in shaping the recovery trajectory? Methods: Paracou is a large scale forest disturbance experiment set up in 1984 with nine 6.25 ha plots spanning on a large disturbance gradient where 15 to 60% of the initial forest ecosystem biomass were removed. More than 70,000 trees belonging to ca. 700 tree species have then been censused every 2 years up today. Using this unique dataset, we aim at deciphering the endogenous (forest structure and composition) and exogenous (local environment and climate stress) drivers of ecosystem recovery in time. To do so, we disentangle carbon recovery into demographic processes (recruitment, growth, mortality fluxes) and cohorts (recruited trees, survivors). Results: Variations in the pre-disturbance forest structure or in local environment do not shape significantly the ecosystem recovery rates. Variations in the pre-disturbance forest composition and in the post-disturbance climate significantly change the forest recovery trajectory. Pioneer-rich forests have slower recovery rates than assemblages of late-successional species. Soil water saturation during the wet season strongly impedes ecosystem recovery but not seasonal drought. From a sensitivity analysis, we highlight the pre-disturbance forest composition and the post-disturbance climate conditions as the primary factors controlling the recovery trajectory. Conclusions" Highly-disturbed forests and secondary forests because they are composed of a lot of pioneer species will be less able to cope with new disturbance. In the context of increasing tree mortality due to both (i) severe droughts imputable to climate change and (ii) human-induced perturbations, tropical forest management should focus on reducing disturbances by developing Reduced Impact Logging techniques.
作者 bruno hérault camille piponiot Bruno Herault;Camille Piponiot(Cirad, UMR EcoFoG (AgroParistech, CNRS, lnra, Universit des AntTIles, University de la Guyane), Campus Agronomique, 97310 Kourou, French Guiana, France;1NPHB (Institut National Polytechnique Felix Houphouet Boigny), Yamoussoukro, IvobJ Coast)
出处 《Forest Ecosystems》 SCIE CSCD 2018年第1期13-27,共15页 森林生态系统(英文版)
基金 funded by the GFclim project(FEDER 2014–2020,Project GY0006894) an Investissement d’avenir grant of the ANR(CEBA:ANR-10-LABEX-0025)
关键词 Ecosystem modeling Tropical forests Carbon fluxes Ecological resilience Climate change Amazonia Ecosystem modeling, Tropical forests, Carbon fluxes, Ecological resilience, Climate change, Amazonia
  • 相关文献

同被引文献20

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部