期刊文献+

高温超导磁悬浮径向轴承悬浮特性分析 被引量:4

The levitation analysis of high temperature superconducting magnetic radical bearing
原文传递
导出
摘要 高温超导磁悬浮轴承凭借无源自稳定的优良特性,在飞轮储能系统中拥有巨大的应用潜能,其主要结构由高温超导定子和永磁转子组成。而轴承的悬浮特性直接决定飞轮转子的设计和飞轮储能系统的容量大小。本文基于磁通冻结镜像法的思想,对高温超导径向磁悬浮轴承的悬浮特性进行分析,并对轴承轴向/径向悬浮力和刚度参数进行计算。结果表明:轴承的悬浮力和刚度随着初始径向位置、径向位移和轴向位移的变化而变化;在相同的位移条件和研究的位移范围内,径向悬浮力/刚度皆大于轴向的情况,且两者相差约一个数量级。 The high temperature superconducting magnetic bearing (HTSMB) has great potential applications in the flywheel energy storage system (FESS) due to its passive levitation characteristics and it consists of superconducting stator and permeant magnetic rotor. The levitation characteristics of HTSMB determines the energy storage capacity and design of flywheel rotor of FESS. Hence, this paper analysed the levitation property of HTSMB based on frozen - flux image method and the levitation force and stiffness of HTSMB were calculated. And the results verify that levitation force and stiffness are corresponding to the initial cooling position, radical and vertical displacement. The values of radical parameters are much more than its vertical counterparts.
作者 陈伟 徐颖 石晶 任丽 唐跃进 Chen Wei;Xu Ying;Shi Jing;Ren Li;Tang Yuejing(R&D Center of Applied Superconductivity, State key Lab. of AEET,Huazhong University of Science and Technology, Wuhan 430074, Chin)
出处 《低温与超导》 CAS 北大核心 2018年第4期20-22,44,共4页 Cryogenics and Superconductivity
基金 国家自然科学基金项目(51677080)资助
关键词 高温超导磁悬浮径向轴承 磁通冻结镜像法 悬浮力 刚度 High temperature superconducting magnetic radical bearing, Frozen -flux image method, Levitation force, Stiffness
  • 相关文献

参考文献2

二级参考文献50

  • 1张江华,曾佑文,王家素,王素玉,宋宏海.高温超导磁悬浮轴承悬浮力数值分析[J].低温与超导,2007,35(2):125-128. 被引量:4
  • 2杨春帆,刘刚,张庆荣.磁悬浮姿控/储能飞轮能量转换控制系统设计与实验研究[J].航天控制,2007,25(3):91-96. 被引量:14
  • 3Zhang Y, Postrekhin Y, Ma K B,et al. Reaction wheel with HTS bearings for mini-satellite attitude control[J]. Supercond. Sci. Technol., 2002, 15(5): 823-825.
  • 4Siems S O, Canders W R, Walter H, et al. Superconducting magnetic bearings for a 2MW/10kWh class energy storage flywheel system[J]. Supercond. Sci. Technol., 2004, 17(5): S229-S233.
  • 5Moon F C. Superconducting levitation[M]. New York: John Wiley and Sons, 1994.
  • 6Hull J R. Superconducting bearings[J]. Supercond. Sci. Technol., 2000, 13(2): R1-R15.
  • 7Ma K B, Postrekhin Y V, Chu W K. Superconductor and magnet levitation devices[J]. Rev. Sci. Instrum., 2003, 74(12): 4989-5017.
  • 8Waiter H, Bock J, Frohne C, et al. First heavy load bearing for industrial application with shaft loads up to 10 kN[J]. J. Phys. Conf. Ser., 2006, 43:995-998.
  • 9Koshizuka N, Ishikawa F, Nasu H, et al. Present status of R&D on superconducting magnetic bearing technologies for flywheel energy storage system[J]. Physica C, 2002, 378-381(Part 1): 11-17.
  • 10Wang J S, Wang S Y, Zeng Y W, et al. The first man-loading high temperature superconducting Maglev test vehicle in the world[J]. Physica C, 2002, 378-381(Part 1): 809-814.

共引文献29

同被引文献35

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部