期刊文献+

Apelin-13对糖尿病大鼠肝脏及骨骼肌糖脂代谢基因水平表达的影响 被引量:6

Effects of Apelin-13 on expression levels of glucose and lipid metabolism-related genes in the liver and skeletal muscle of diabetic rats
原文传递
导出
摘要 目的观察外源性给予Apelin-13对糖尿病鼠肝脏及骨骼肌的葡萄糖及脂肪酸代谢基因表达的影响。方法40只雄性Wister大鼠,随机分成两组,对照组和实验组分别为8只及32只。实验组通过给予高糖、高脂饮食,联合低剂量腹腔注射链脲佐菌素(STZ)构建2型糖尿病大鼠模型。将造模成功的糖尿病大鼠随机分成糖尿病模型组和Apelin-13给药组各14只。给药组大鼠腹腔注射Apelin-13,0.1 μmol·kg-1·d﹣1,对照组及糖尿病模型组腹腔注射等体积0.9%NaCl溶液,持续给药10周。10周末,测定各组大鼠空腹血糖值后取材。实时荧光定量PCR检测肝脏组织中葡萄糖6磷酸酶(G6P)、磷酸烯醇式丙酮酸羧激酶(PEPCK)、过氧化物酶体增殖物激活体-α(PPARα)、脂酰辅酶A合成酶长链家族成员1(ACSL1)、肉毒碱棕櫚酰转移酶1(CPT1)的基因表达水平;骨骼肌中葡萄糖转运蛋白4(GLUT4)、过氧化物酶体增殖物激活体-α(PPARα)的基因的mRNA表达水平。结果糖尿病模型组肝脏PPARα mRNA表达水平低于对照组[(0.309±0.073)和(0.971±0.028),P〈0.05],经外源性给予Apelin-13 10周干预后,PPARα mRNA表达水平[(0.663±0.085),P〈0.05)]较模型组有所升高,但低于对照组;糖尿病模型组肝脏ACSL1 mRNA表达水平低于对照组[(0.508±0.056)和(0.990±0.015),P〈0.05]经外源性给予Apelin-13 10周干预后,ACSL1 mRNA表达水平[(0.802±0.079),P〈0.05]较模型组有所升高,但低于对照组;糖尿病模型组肝脏CPT1 mRNA表达水平低于对照组[(0.398±0.118)和(0.987±0.015),P〈0.05],经外源性给予Apelin-13 10周干预后,CPT1 mRNA表达水平[(0.752±0.097),P〈0.05]较模型组有所升高,但低于对照组;模型组大鼠G6P mRNA表达水平均高于对照组[(1.727±0.005)和(1.002±0.005),P〈0.05],经外源性给予Apelin-13 10周干预后,G6P mRNA表达水平高于糖尿病模型组[(2.586±0.208),P〈0.05];模型组大鼠PEPCK mRNA表达水平高于对照组[(1.309±0.130)和(0.993±0.010),P〈0.05]和,经外源性给予Apelin-13 10周干预后,PEPCK mRNA表达水平[(1.842±0.234),P〈0.05]均高于糖尿病模型组;糖尿病模型组大鼠骨骼肌PPARα mRNA表达水平低于对照组[(0.477±0.118)和(0.993±0.013),P〈0.05],经外源性给予Apelin-13干预后,PPARα[(0.566±0.0780),P〉0.05]与糖尿病模型组比较差异无统计学意义,但低于对照组(P〈0.05);糖尿病模型组大鼠骨骼肌GLUT4 mRNA表达水平低于对照组[(0.289±0.066)和(0.994±0.009)P〈0.05],经外源性给予Apelin-13干预后,糖尿病模型组大鼠骨骼肌GLUT4 mRNA表达水平[(0.509±0.119),P〈0.05]较模型组有所升高,但低于对照组。结论Apelin-13增加肝脏PPARα、ACSL1、CPT1基因表达,在一定程度上改善2型糖尿病鼠肝脏脂肪酸氧化代谢。Apelin-13增加G6P、PEPCK基因表达,促进肝脏糖异生,可能参与2型糖尿病的发生发展。Apelin-13增加骨骼肌GLUT4基因表达,在一定程度上改善糖尿病大鼠骨骼肌糖代谢,可能参与骨骼肌氧化应激的调节。 Objective To investigate the effects of exogenous Apelin-13 on the expression of glucose and fatty acid metabolism-related genes in the liver and skeletal muscle of diabetic rats.MethodsForty male Wister rats were randomly divided into a control group (n=8) and an experimental group (n=32). In the experimental group, a rat model of type 2 diabetes mellitus was established by a high-glucose and high-fat diet and intraperitoneal injection of streptozotocin (STZ). The diabetic rats were randomized into a diabetic model group and an Apelin-13 treatment group with 14 rats in each group.Rats in the Apelin-13 treatment group were intraperitoneally injected with 0.1 μmol·kg·d-1 Apelin-13 for 10 weeks, while the control group and the diabetic model group were injected with an equal volume of 0.9% NaCl solution for 10 weeks.At the end of the 10 week treatment, fasting blood glucose values in each group were measured.Levels of mRNA expression of glucose-6-phosphate (G-6-P), phosphoenolpyruvate carboxykinase (PEPCK), peroxisome proliferator-activated receptor alpha (PPAR-α), acy1-CoA synthetase long-chain family member1 (ACSL1), and carnitine palmitoyltransferase1 (CPT1) in the liver and levels of mRNA expression of PPAR-α and glucose transporter type 4 (GLUT4) in skeletal muscle were detected by real-time fluorescence quantitative polymerase chain reaction (PCR).ResultsLevels of mRNA expression of liver PPAR-α, liver ACSL1, liver CPT1, and GLUT4 in skeletal muscle were lower in the diabetic model group (0.309±0.073, 0.508±0.056, 0.389±0.118 and 0.289±0.066, respectively) than in the control group (0.971±0.028, 0.990±0.015, 0.987±0.015 and 0.994±0.009, respectively) (all P〈0.05); In the Apelin-13 treatment group, their mRNA expression levels (0.663±0.085, 0.802±0.079, 0.752±0.097 and 0.509±0.119, respectively) were higher than in the diabetic model group, but lower than in the control group (all P〈0.05). Liver G-6-P and PEPCK mRNA levels in the diabetic model group (1.727±0.05 and 1.309±0.130) were higher than in the control group (1.002±0.005 and 0.993±0.010) (both P〈0.05), but lower than in the Apelin-13 treatment group (2.586±0.208 and 1.842±0.234) (both P〈0.05). Skeletal muscle PPAR-α mRNA levels in the diabetic model group (0.477±0.118) and the Apelin-13 treatment group (0.566±0.0780) were lower than in the control group (0.993±0.013) (both P〈0.05), but showed no significant difference between the two experimental groups (P〉0.05).ConclusionsApelin-13 increases the expression of the PPAR, ACSL1, and CPT1 genes in the liver and, to a certain extent, improves fatty acid oxidation metabolism in the liver in type 2 diabetic rats.It also increases the expression of the G-6-P and PEPCK genes, promotes gluconeogenesis in the liver, and may be related to the development of type 2 diabetes.In skeletal muscle, Apelin-13 increases GLUT4 gene expression, moderately improves skeletal muscle metabolism and may play a role in the regulation of oxidative stress.
作者 姜文慧 冯景辉 吴秀萍 Jiang Wenhui;Feng Jinghui;Wu Xiuping(Department of Geriatrics, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China)
出处 《中华老年医学杂志》 CAS CSCD 北大核心 2018年第4期456-460,共5页 Chinese Journal of Geriatrics
基金 哈尔滨市科技局科技创新基金(2012RFXXS050) 哈尔滨医科大学附属第一医院科研基金(2016Y007)
关键词 糖尿病 碳水化合物代谢 脂类代谢 APELIN-13 Diabetes mellitus Carbohydrate metabolism Lipid metabolism Apelin-13
  • 相关文献

参考文献2

二级参考文献31

  • 1KharroubiAT, Darwish HM. Diabetes mellitus: The epidemic of the century[J]. World J Diabetes, 2015,6(6) ..850-867. DOI: 10. 4239/wjd. v6. i6. 850.
  • 2Asrih M, Steffens S. Emerging role of epigenetics and miRNA in diabetic cardiomyopathy [ J ]. Cardiovase Pathol, 2013,22(2) : 117 125. DOI.. 10. 1016/j. carpath. 2012.07. 004.
  • 3Zhengzhong Z, Yafa Y, Jin L. Fibrinogen like protein 2 gene silencing inhibits cardiomyocytes apoptosis, improves heart function of streptozotocin- induced diabetes rats and the molecular mechanism involved[J]. Biosci Rep, 2015, 35: e00219. DOI..10. 1042/BSR20150078.
  • 4KuetheF, Sigusch HH, Bornstein SR, et al. Apoptosis in patients with dilated cardiomyopathy and diabetes: a feature of diabetic cardiomyopathy? [J]. Horm Metab Res,2007,39(9) :672-676. DOI: 10. 1055/s-2007-985823.
  • 5Takemura G, Kanoh M, Minatoguchi S, et al. Cardiomyocyte apoptosis in the failing heart-a critical review from definition and classification of cell death [J]. Int J Cardiol, 2013, 167(6):2373-2386. D()I: 10. 1016/j. ijcard. 2013.01. 163.
  • 6AkcIlar R, Turgut S, Caner V, et al. The effects of apelin treatment on a rat model of type 2 diabetes[J]. Adv Med Sci, 2015,60(1):94-100. DOI: 10. 1016/j. advms. 2014.11. 001.
  • 7Castan-Laurell I, Dray C, Attan C, et al. Apelin, diabetes, and obesity [ J ]. Endocrine, 2011,40 ( 1 ) : 1 9. DOh 10. 1007/s12020-011-9507 9.
  • 8Ladeiras-Lopes R, Ferreira-Martins J, Leite-Moreira AF. The apelinergic system: the role played in human physiology and pathology and potential therapeutic applications[J]. Arq Bras Cardiol, 2008, 90 (5) : 343-379. DOI: 10. 1590/S0066- 782X2008000500012.
  • 9Dalzell JR, Rocchiccioli JP, Weir RAP, et al. The emerging potential of the apelin-APJ system in heart failure[J]. J Card Fail, 2015,21(6):489 449. DOI: 10. 1016/j. cardfail. 2015.03. 007.
  • 10B/icklund T, Palojoki E, Saraste A, et al. Sustained cardiomyocyte apoptosis and left ventricular remodelling after myocardial infarction in experimental diabetes[J]. Diabetologia, 2004,47(2) : 325-330. DOI: 10. 1007/s00125 003-1311-5.

共引文献3

同被引文献41

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部