期刊文献+

Chimera states in Gaussian coupled map lattices

Chimera states in Gaussian coupled map lattices
原文传递
导出
摘要 We study chimera states in one-dimensional and two-dimensional Gaussian coupled map lattices through simulations and experiments. Similar to the case of global coupling oscillators, individual lattices can be regarded as being controlled by a common mean field. A space-dependent order pa- rameter is derived from a self-consistency condition in order to represent the collective state. We study chimera states in one-dimensional and two-dimensional Gaussian coupled map lattices through simulations and experiments. Similar to the case of global coupling oscillators, individual lattices can be regarded as being controlled by a common mean field. A space-dependent order pa- rameter is derived from a self-consistency condition in order to represent the collective state.
机构地区 Department of Physics
出处 《Frontiers of physics》 SCIE CSCD 2018年第2期39-42,共4页 物理学前沿(英文版)
关键词 chimera state coupled map lattices nonlocal coupling chimera state, coupled map lattices, nonlocal coupling
  • 相关文献

参考文献2

二级参考文献12

  • 1K. Kaneko, Collapse of Tori and Genesis of Chaos in Dissipative Systems, Vol. 33, World Scientific, 1986.
  • 2K. Kaneko, Lyapunov analysis and information flow in coupled map lattices, Physica D 23(1), 436 (1986).
  • 3K. Kaneko, Pattern dynamics in spatiotemporal chaos: Pattern selection, diffusion of defect and pattern competition intermittency, Physica D 34(1), 1 (1989).
  • 4K. Kaneko, Spatiotemporal chaos in one-and two-dimensional coupled map lattices, Physica D 37(1), 60 (1989).
  • 5G. Hu and Z. L. Qu, Controlling spatiotemporal chaos in coupled map lattice systems, Phys. Rev. Lett. 72(1), 68 (1994).
  • 6P. M. Gade and C.-K. Hu, Synchronous chaos in coupled map lattices with small-world interactions, Phys. Rev. E 62(5), 6409 (2000).
  • 7O. N. Bjornstad, R. A. Ims, and X. Lambin, Spatial population dynamics: analyzing patterns and processes of population synchrony, Trends in Ecology & Evolution 14(11), 427(1999).
  • 8J. Garcia-Ojalvo and R. Roy, Spatiotemporal communication with synchronized optical chaos, Phys. Rev. Lett. 86(22), 5204 (2001).
  • 9H. Kantz, A robust method to estimate the maximal Lyapunov exponent of a time series, Phys. Lett. A 185(1), 77 (1994).
  • 10L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Cluster synchronization and isolated desynchronization in complex networks with symmetries, Nature Communications 5, 4079 (2014).

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部