摘要
设w(z)为单位圆盘U到约当区域Ω?C上的调和映照.给出w(z)具有Lipschitz性质的等价条件.进一步地,若Ω为有界凸区域,对其边界函数给出一个较弱的条件,使得w=P[f](z)为调和拟共形映照.
Suppose that w(z) is a harmonic mapping of the unit disk U onto a Jordan domain Ω?C. The author finds some equivalent conditions for the Lipschitz property of w(z). Moreover, if Ω is a bounded convex domain, a weaker condition on the boundary function f is found, such that w(z) = P[f](z) is a harmonic quasiconformal mapping.
作者
朱剑峰
ZHU Jianfeng(School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, Fujian, China.)
出处
《数学年刊(A辑)》
CSCD
北大核心
2018年第1期33-42,共10页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.11501220
No.11471128)
福建省自然科学基金(No.2016J01020)
华侨大学中青年教师科研提升计划(No.ZQN-YX110)的资助