摘要
张量分解是处理大规模数据的一种方法,它能有效的对数据进行降阶,由于高阶张量具有唯一性、对噪声更鲁棒、不破坏原数据的空间结构和内部潜在信息等优点,被广泛应用于神经科学、信号处理、图像分析、计算机视觉等领域。论文首先对传统的降维方法进行了介绍,指出这些方法存在的问题和不足。其次对张量分解的三种经典算法:CP分解、Tucker分解以及非负张量分解从算法的求解、基本思想、算法框架以及算法应用等方面进行概括分析,对CP分解算法和Tucker分解算法从多角度进行对比分析。最后对张量分解的现状以及实际应用进行了归纳和总结,并对未来的研究发展趋势进行了分析和展望。
Tensor decomposition is a significant method to deal with large-scale data, which can reduce the data effectively. The high-order tensor is widely used in neuroscience, signal processing, image analysis, computer vision and other fields as it has such advantages as uniqueness, robustness to noises and zero impact on the original data of the spatial structure and internal potential information. In this paper, the traditional dimensionality reduction methods were introduced firstly, and their problems and shortcomings were also discussed. Secondly,general analysis of three classical algorithms of tensor decomposition was carried out from the aspects of algorithm, basic ideas, algorithm framework and algorithm applications of CP decomposition, Tucker decomposition and non-negative tensor decomposition. Then, The CP decomposition algorithm and the Tucker decomposition algorithm were compared and analyzed from different angles. Finally, the present situation, practical application and future research trends of tensor decomposition were summarized and analyzed.
作者
熊李艳
何雄
黄晓辉
黄卫春
Xiong Liyan;He Xiong;Huang Xiaohui;Huang Weichun(East China Jiaotong University 1. School of Information Engineering;School of Software Engineering, Nanchang 330013, China)
出处
《华东交通大学学报》
2018年第2期120-128,共9页
Journal of East China Jiaotong University
基金
国家自然科学基金项目(61363072
61462027
6156202)
江西省研究生创新基金(YC2016-S261)
江西省自然科学基金项目(2016BAB212050)
江西省科技成果转移转化计划项目(20161BB190032
20142BB190027)
关键词
张量
CP分解
Tucker分解
非负张量分解
tensor
CP decomposition
tucker decomposition
non-negative tensor decomposition