期刊文献+

张量分解算法研究与应用综述 被引量:8

Research and Application of Tensor Decomposition Algorithm
下载PDF
导出
摘要 张量分解是处理大规模数据的一种方法,它能有效的对数据进行降阶,由于高阶张量具有唯一性、对噪声更鲁棒、不破坏原数据的空间结构和内部潜在信息等优点,被广泛应用于神经科学、信号处理、图像分析、计算机视觉等领域。论文首先对传统的降维方法进行了介绍,指出这些方法存在的问题和不足。其次对张量分解的三种经典算法:CP分解、Tucker分解以及非负张量分解从算法的求解、基本思想、算法框架以及算法应用等方面进行概括分析,对CP分解算法和Tucker分解算法从多角度进行对比分析。最后对张量分解的现状以及实际应用进行了归纳和总结,并对未来的研究发展趋势进行了分析和展望。 Tensor decomposition is a significant method to deal with large-scale data, which can reduce the data effectively. The high-order tensor is widely used in neuroscience, signal processing, image analysis, computer vision and other fields as it has such advantages as uniqueness, robustness to noises and zero impact on the original data of the spatial structure and internal potential information. In this paper, the traditional dimensionality reduction methods were introduced firstly, and their problems and shortcomings were also discussed. Secondly,general analysis of three classical algorithms of tensor decomposition was carried out from the aspects of algorithm, basic ideas, algorithm framework and algorithm applications of CP decomposition, Tucker decomposition and non-negative tensor decomposition. Then, The CP decomposition algorithm and the Tucker decomposition algorithm were compared and analyzed from different angles. Finally, the present situation, practical application and future research trends of tensor decomposition were summarized and analyzed.
作者 熊李艳 何雄 黄晓辉 黄卫春 Xiong Liyan;He Xiong;Huang Xiaohui;Huang Weichun(East China Jiaotong University 1. School of Information Engineering;School of Software Engineering, Nanchang 330013, China)
出处 《华东交通大学学报》 2018年第2期120-128,共9页 Journal of East China Jiaotong University
基金 国家自然科学基金项目(61363072 61462027 6156202) 江西省研究生创新基金(YC2016-S261) 江西省自然科学基金项目(2016BAB212050) 江西省科技成果转移转化计划项目(20161BB190032 20142BB190027)
关键词 张量 CP分解 Tucker分解 非负张量分解 tensor CP decomposition tucker decomposition non-negative tensor decomposition
  • 相关文献

参考文献3

二级参考文献28

  • 1宋乾坤,柳斌.矩阵奇异值的两个不等式的推广[J].四川理工学院学报(社会科学版),1994,12(4):78-80. 被引量:5
  • 2白亮,老松杨,陈剑赟,吴玲达.基于支持向量机的音频分类与分割[J].计算机科学,2005,32(4):87-90. 被引量:13
  • 3Zhou B, Hansen J. Efficient audio stream segmentation via T2 statistic based Bayesian information criterion (T2- BIC) [ J]. IEEE Transactions on Speech and Audio Process, 2005, 13(4): 467-474.
  • 4Stephen V Rice, Stephen M Bailey. An Integrated Environment for Audio Recording, Editing and Retrieval[ C ] //Eighth IEEE International Symposium on Multimedia. San Diego:CA, 2006:790-791.
  • 5Pfeiffer S, Fischer S, Effelsberg W. Automatic audio content analysis[ C]//Proceedings of the fourth ACM international conference on Multimedia, 1997:21 -30.
  • 6Saunders J. Real-time discrimination of broadcast speech/music [ C ]//Proc. IEEE ICASSP. 1996,2:993 - 996.
  • 7Scheirer E, Slaney M. Construction and evaluation of a robust muhifeature music/speech discriminator [ C ] // Proc. IEEE ICASSP, 1997, II :1331 - 1334.
  • 8Zhang T, Kuo J. Video content parsing based on combined audio and visual information [ C ] //Proc. SPIE.Boston MA : 1999,3846:78 - 89.
  • 9Li S. Content-Based classification and retrieval of audio using the nearest feature line method[ J]. IEEE Transactions on Speech and Audio Processing, 2008,8 ( 5 ) : 619 - 625.
  • 10Liu Z, Huang J, Wang Y. Audio feature extraction & analysis for scene classification[ J]. IEEE Transactions on Speech and Audio Processing, 1997,8 ( 5 ) : 312 - 316.

共引文献46

同被引文献74

引证文献8

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部