期刊文献+

液相剥离法制备超薄氧化钛纳米薄片

Chemical Liquid Phase Exfoliation of Ultrathin Titania Nanoflakes
原文传递
导出
摘要 自石墨烯问世以来,纳米薄片材料以其独特的二维结构和电学性能,被视为未来电子器件的优秀备选材料。其中,二维氧化钛纳米薄片在减薄至纳米厚度时仍具有高介电常数,是一种很好的绝缘材料,但较小的横向尺寸限制了其应用。采用晶体的高温熔融生长法和层状材料的化学液相剥离法相结合,制备了单层和薄层的氧化钛(Ti_(0.87)O_2^(0.52-))纳米薄片,并结合X射线衍射仪(XRD)、扫描电子显微镜(SEM)等材料分析手段对其制备工艺进行了优化。通过降低高温熔融生长过程中的降温速率减少了副产物的生成,从而提高了产物的纯度,并将生成前驱体钛酸盐(KTO)的尺寸由约20μm增大至约200μm。还通过控制化学液相剥离过程中TBAOH溶液的浓度得到了剥离效果更好的氧化钛纳米薄片,并利用能谱仪(EDS)和原子力显微镜(AFM)等分析了氧化钛纳米薄片的形貌和成分。还利用静电吸引将氧化钛纳米薄片拼接成大面积的纳米薄膜,并通过超声处理大大减小了拼接时样品的重叠和空白。 Nanoflakes were regarded as perfect candidates for future electron devices because of their unique two-dimensional(2 D)structures and electrical properties since graphene was prepared.2 D titania nanoflakes were excellent insulating materialswith high dielectric constant even when their thicknesses reduced to a few nanometers.However,its application was limited by small lateral size.Herein,we prepared mono-and few-layer titania nanoflakes via combining crystal growth at high temperature and chemical liquid phase exfoliation of materials with layered structure.And the synthesis process was optimized with the assistance of X-ray diffraction(XRD)and scanning electron microscope(SEM).In particular,the K_(0.8)[Ti_(1.73)Li_(0.27)]O_4(KTO) samples were prepared in a higher efficiency and their sizes was broadened to 200 μm from 20 μm through suppressing the yield of by-product K_2Ti_6O_(13) by decreasing rate of temperature fall.The exfoliation of titania nanoflakes was optimized by controlling the concentration of TBAOH solution.Moreover,the morphology and component of as-prepared titania nanoflakes were investigated by energy dispersive spectroscope(EDS) and atomic force microscope(AFM) techniques.Titania nanoflakes could be assembled together to form a nanofilm with larger lateral size via electrostatic attraction and the overlap and vacancy could be reduced by ultrasonic treatment.
作者 吴伟 张洋 张珂 刘彩红 翟俊宜 Wu Wei;Zhang Yang;Zhang Ke;Liu Caihong;Zhai Junyi(Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences, Belting 100083, China)
出处 《稀有金属》 EI CAS CSCD 北大核心 2018年第3期225-230,共6页 Chinese Journal of Rare Metals
基金 国家自然科学基金项目(51472056)资助
关键词 氧化钛纳米薄片 二维结构 化学液相剥离 降温速率 titania nanoflake 2D nanostructure chemical liquid phase extoliation rate of temperature fall
  • 相关文献

参考文献3

二级参考文献64

  • 1刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:电子工业出版社,2012,0.
  • 2Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S. Intrinsic and extrinsic performance limits of graphene de- vices on SiO2[J]. Nat. Nanotechnol. , 2008, 3: 209.
  • 3Balandin A A, Ghosh S, Bao W Z, Calizo I, Tewelde- brhan D, Miao F, Lau C N. Superior thermal conduc- tivity of single-layer graphene [ J]. Nano. Lett. , 2008, 8 (3): 902.
  • 4Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Fine structure constant defines visual transparency of graphene [J]. Science, 320(5881): 1308.
  • 5Xu Z. Graphene nano-ribbons under tension [ J 1. Journal of Computational and Theoretical Nanoscience, 2009, 6 (3) : 625.
  • 6Maeng I, Lira S C, Chae S J, Lee Y H, Choi H Y, Son J H. Gate-controlled nonlinear conductivity of Dirac Fermion in graphene field-effect transistors measured by Terahertz time-domain spectroscopy [ J ]. Nano. Lett. , 2012, 12(2) : 553.
  • 7Farmer D B, Lin Y M, Avouris P. Graphene field effect transistors with self-aligned gates [ J ]. Appl. Phys. Lett., 2010, 97(1): 013103.
  • 8Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Gra- phene photonics and optoelectronics [ J ]. Nature Photon- ics, 2010, (4): 615.
  • 9Liu M, Yin X B, Zhang X. Double-layer graphene op- tical modulator [J]. Nano. Lett. , 2012, 12(3) : 1483.
  • 10Stoller M D, Park S, Zhu Y W, An J, Ruoff R S. Graphene-based ultracapacitors [J]. Nano. Lett. , 2008, 8 (10) : 3498.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部