摘要
介绍了一类与年龄相关的随机固定资产系统倒向Euler数值解法.漂移系数和扩散系数在单边Lipschitz条件和有界条件下,建立了随机固定资产系统倒向Euler数值解均方渐近有界性的判定准则.最后通过数值算例对结论进行了验证.
In this paper, we introduce a class of backward Euler methods for stochastic age-dependent capital system with fractional Brownian motion and jumps. Under the onesided Lipschitz condition on the drift coefficient and the bounded condition on the diffusion coefficients, we obtain the asymptotic mean-square boundedness of the backward Euler numerical solution of stochastic age-dependent capital system with fractional Brownian motion and jumps. Finally, an example is given for verifying the algorithm of this paper.
作者
冯娟婷
顾银鲁
申芳芳
李盘润
FENG Juan-ting;GU Yin-lu;SHEN Fang-fang;LI Pan-run(Basic Course Teaching Department, Yinchuan Energy College, YinChuan 750105, China;Department of Basic, Guizhou University of Finance and Economics, Huishi 550600, China;Department of Basic, Sichuan Vocational College of Information Technology, GuangYuan 628000, China;School of Mathematics and Information Science, North University for Nationalities, VinChuan 750021 China)
出处
《数学的实践与认识》
北大核心
2018年第8期26-31,共6页
Mathematics in Practice and Theory
基金
宁夏回族自治区自然科学基金(NZ15104)
本科生创新孵育项目(2017-KY-C-15)
关键词
随机固定资产系统
分数Brown运动
倒向Euler法
均方渐近有界
stochastic age-dependent capital system
fractional brownian
backward euler methods
asymptotic meamsquare boundedness