期刊文献+

分数阶p-Laplacian耦合系统边值问题正解的存在性

The Existence of Positive Solutions for the Fractional Order Coupled System with P-Laplacian Operator
原文传递
导出
摘要 讨论了一类带有p-Laplacian算子的分数阶微分方程耦合系统边值问题正解的存在性,通过Green函数将微分系统转化为等价的积分系统,应用Banach压缩映像原理,Leray-Schauder非线性抉择和锥拉伸定理等证明耦合系统正解的存在性,并给出了应用实例. In this paper, we discuss the existence of positive solutions for the boundary value problem of coupled system of fractional differential equations with p-Laplacian operator. By using the Green function, the differential system is transformed into an equivalent integral system. We prove the existence of positive solutions by using Banach contraction mapping principle, Leray-Schauder fixed point theorem and Guo-Krasnosel' skii fixed point theorem on cones. Finally, two examples are provided to illustrate our main results.
作者 汪秀娟 刘元彬 胡卫敏 WANG Xiu-juan;LIU Yuan-bin;HU Wei-min(School of Mathematics and Statistics, Yili Normal University, Yining 835000, Chin)
出处 《数学的实践与认识》 北大核心 2018年第8期212-221,共10页 Mathematics in Practice and Theory
基金 伊犁师范学院研究生科研创新项目(2016YSY006) 新疆高校科研计划重点项目(XJEDU20141040)
关键词 分数阶微分方程 不动点定理 耦合系统 P-LAPLACIAN算子 正解 fractional differential equation fixed point theorem coupled system p-Laplacian operator positive solutions
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部