期刊文献+

具有不耐烦顾客和K-重工作休假的M^X/M/1排队系统分析 被引量:1

Analysis of an M^X/M/1 Queueing System with Impatient Customers and K-Working Vacation Policy
原文传递
导出
摘要 研究了一个等待空间无限的具有不耐烦顾客和K-重工作休假M^X/M/1排队系统.当系统中没有顾客时服务员转入工作休假状态;服务员最多可进行K次休假,若K次之后系统中仍没有顾客,服务员进入闲期.顾客按Poisson过程批量到达,到达的批量服从一般离散分布.在工作休假期间,到达的顾客可能由于等待不耐烦而离开系统.文章建立了系统的稳态平衡方程,利用概率母函数的方法得到了稳态下正常忙期的平均队长和工作休假期的平均队长以及其他一些相关指标的解析表达式.最后,利用数值算例分析了系统参数以及参数K的变化对稳态指标的影响. This paper presents an analysis for an infinite-buffer M^X/M/1 queue with impatient customers and K-working vacation policy. Whenever the system becomes empty, the server can take a working vacation. The server is allowed to take a maximum number K of consecutive vacations if the system remains empty after the end of a vacation. After the number K of consecutive vacations if the system is still empty, the server comes into the idle period. Customers arrive in batches according to a Poisson process. The batch size follows a general discrete distribution. During the working vacation, the customers may become impatient and leave the system.We obtain analytical expressions of the system sizes when the sever is in the normal period and in the working vacation respectively by using the probability generating function. We further derive analytical expressions of other performance measures.Finally, numerical results are presented to demonstrate effects of some parameters and the maximum number K on the performance measures of the system.
作者 岳德权 张雪梅 张玉英 YUE Dequan;ZHANG Xuemei;ZHANG Yuying(College of Science, Yanshan University, Qinhuangdao 06600)
机构地区 燕山大学理学院
出处 《系统科学与数学》 CSCD 北大核心 2018年第2期247-260,共14页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(71071133) 河北省自然科学基金(A2017203078)资助课题
关键词 排队系统 成批到达 不耐烦顾客 K-重工作休假 概率母函数 Queueing system, batch arrival, impatient customers, K-working vacation, probability generating function.
  • 相关文献

参考文献1

二级参考文献19

  • 1Arumuganathan,R.& Jeyakumar,S.(2005).Steady state analysis of a bulk queue with multiple vacations,setup times with N-policy and closedown times.Applied Mathematical Modeling,29:972-986.
  • 2Baba,Y.(1986).On the M[x]/G/1 queue with vacation time.Operations Research Letters,5:93-98.
  • 3Choudhury,G.(2002).A batch arrival queue with a vacation time under single vacation policy.Computers and Operations Research,29:1941-1955.
  • 4Cox,D.R.(1955).The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables.Proceedings Cambridge Philosophical Society,51:433-441.
  • 5Doshi,B.T.(1986).Queueing systems with vacations-a survey.Queueing Systems,1:29-66.
  • 6Feinberg,E.A.& Kim,D.J.(1996).Bicriterion optimization of an M/G/1 queue with a removable server.Probability in the Engineering and Informational Sciences,10:57-73.
  • 7Ke,J.-C.(2001).The control policy of an M[x]/G/1 queueing system with server startup and two vacation types.Mathematical Methods of Operations Research,54(3):471-490.
  • 8Ke,J.-C.& Chu,Y.-K.(2006).A modified vacation model M[x]/G/1 system.Applied Stochastic Models in Business and Industry,22:1-16.
  • 9Ke,J.-C.(2007).Operating characteristic analysis on the M[x]/G/1 system with a variant vacation policy and balking.Applied Mathematical Modelling,31(7):1321-1337.
  • 10Kella,O.(1989).The threshold policy in the M/G/1 queue with server vacations.Naval Research Logistics,36:111-123.

共引文献1

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部