期刊文献+

二维向量丛的最大子线丛

Some Remarks on Maximal Line Subbundles of Rank Two Vector Bundles
下载PDF
导出
摘要 本文中我们利用 A.Bertram和 B. Feiberg证明的在 g=5的当 S(E)<2时的一般代数曲线上二维特殊稳定向量丛的存在定理作为反例,说明进一步的Maruyama猜想和Arrondo-Sols猜想在g=5的一般代数曲线上均不能成立. By using some results on the existence of rank two special stable vector bundles over generic curves of genus 5, we give count-examples to show that both Maruyama's conjecture and Arrondo-Sols' conjecture are false on generic curves of genus 5.
作者 谭小江
出处 《数学进展》 CSCD 北大核心 2002年第2期178-180,共3页 Advances in Mathematics(China)
基金 国家自然科学基金资助
关键词 二维 代数曲线 向量丛 最大子线丛 RIEMANN曲面 Marayama猜想 Arrondo-Sols猜想 curve vector bundle maximal line subbundle
  • 相关文献

参考文献9

  • 1Arbarello E,Cornalba M,Griffiths P,Harris H.Geometry of Algebraic Curves,I.Springer-Verlag,1985.
  • 2Arrondo E,Sols I.Open Problem 43.Lecture Notes in Math,1389,Springer-Verlag,1989.
  • 3Atiyah M F,Vector bundles on elliptic curves.Proc.London Math.Soc.,1957,7: 414-452.
  • 4Bertram A,Feiberg B.On stable rank two bundles with canondcal determinant and many sections.Algebra Geomety,259 269.Lecture Note in Pure and Appl.Math.200.NY 1998.(MR9914705)
  • 5Griffiths P,Harris H.The dimension of the variety of special linear systems on a generic curve.Duke.Math.J.,1980,47: 233-272.
  • 6Lange H,Narasimhan M S.Maximal subbundles of rank two vecter bundle on curves.Math.Ann.,1983,266: 55-72.
  • 7Maruyama M.On classification of ruled surfaces.Lecture in Math,Kyoto Univ.,Tokyo,1970.
  • 8Nagata.On self intersection number of vector bundles of rank two on a Riemann Surface.Nagoya.Math.J.1970,37:191 196.
  • 9谭小江.Arrondo-Sols猜想的一个反例[J].科学通报,1991,36(21):1610-1613. 被引量:1

二级参考文献1

  • 1Lang H,Math Ann,1982年,266卷,55页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部