摘要
文中利用被动微波辐射计AMSR-E土壤水分数据和MODIS数据,在频谱降尺度算法框架下,针对文中数据特征,修正模型拟合方程,并引入遥感物理蒸散模型,发展了一种新的大尺度土壤水分数据降尺度算法。此后通过反演土壤水分数据与全球能量与水循环协调观测计划的(CEOP)亚澳季风计划蒙古实验区内地表实测数据的比较,证明该方法可获得数值、时间变化趋势均与实测数据吻合较好的高分辨率土壤水分数据,确认了该降尺度方法较高的可信度及准确性。
Soil moisture is an important part of global energy cycle. Obtaining quantitative soil moisture accurate- ly is of great significance for environmental protection, agricultural production monitoring, global change study, etc. There are many remote sensing platforms providing soil moisture data in different temporal and scales, each of which has its own advantages and disadvantages. By using AMSR -E soil moisture data by passive microwave radiometers and MODIS data, taking Mongolia and Asia as the verification zone, we spatial gained devel- oped a new downscaling algorithm for large - scale soil moisture data under the framework of the spectrum down- scaling algorithm by improving the model fitting equation and introducing the evapotranspiration model of remote sensing physics. The comparison with ground measured data from the Asia - Australia Monsoon Project of Coordi- nated Energy and water- cycle Observation Project (CEOP) in Mongolia study area shows that the downscaled soil moisture data and its changing trends are in good agreement with measured data. Hence it is confirmed that the downscaling method is of high accuracy and credibility.
作者
王安琪
柳鹏
WANG Anqi;LIU Peng(North China University of Technology, Beijing 100144, China;Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences,)
出处
《干旱区资源与环境》
CSSCI
CSCD
北大核心
2018年第5期104-109,共6页
Journal of Arid Land Resources and Environment
基金
国家自然科学基金项目(41401426)
博士后基金项目
北方工业大学科研启动基金项目资助
关键词
土壤水分
被动微波
光学影像
傅里叶变换
空间频谱降尺度
soil moisture
passive microwave
optical images
fourier transform
spatial frequency spectrumdownscaling