期刊文献+

Deposition of Phase-pure Cr2AlC Coating by DC Magnetron Sputtering and Post Annealing Using Cr-Al-C Targets with Controlled Elemental Composition but Different Phase Compositions 被引量:3

Deposition of Phase-pure Cr_2AlC Coating by DC Magnetron Sputtering and Post Annealing Using Cr-Al-C Targets with Controlled Elemental Composition but Different Phase Compositions
原文传递
导出
摘要 Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Particularly, various targets synthesized by hot pressing mixture of Cr, Al, and C powders at 650-1000 ℃ were used. It was found that regardless of the phase compositions and density of the com- posite targets, when the molar ratio of Cr:Al:C in the starting materials was 2:1:1, phase-pure crystalline Cr2AlC coatings were prepared by magnetron sputtering and post crystallization. The Cr2AIC coatings were dense and crack-free and had a duplex structure. The adhesion strength of the coating deposited on M38G superalloy from the 800 ℃ hot-pressed target and then annealed at 620 ℃ for 20 h in Ar exceeded 82 ± 6 MPa, while its hardness was 12 ± 3 GPa. Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Particularly, various targets synthesized by hot pressing mixture of Cr, Al, and C powders at 650-1000 ℃ were used. It was found that regardless of the phase compositions and density of the com- posite targets, when the molar ratio of Cr:Al:C in the starting materials was 2:1:1, phase-pure crystalline Cr2AlC coatings were prepared by magnetron sputtering and post crystallization. The Cr2AIC coatings were dense and crack-free and had a duplex structure. The adhesion strength of the coating deposited on M38G superalloy from the 800 ℃ hot-pressed target and then annealed at 620 ℃ for 20 h in Ar exceeded 82 ± 6 MPa, while its hardness was 12 ± 3 GPa.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第3期466-471,共6页 材料科学技术(英文版)
基金 supported by the National Natural Science Foundation of China under Grant Nos.51271191,51571205 and 51401209
关键词 Cr2AlC Coating Magnetron sputtering Composite target Heat treatment Cr2AlC Coating Magnetron sputtering Composite target Heat treatment
  • 相关文献

同被引文献20

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部