期刊文献+

基于CFD方法的舵角对有效功率的影响

Study of Effect of Rudder Angle for Effective Power Based on CFD
下载PDF
导出
摘要 对某集装箱船开展不同舵角下船舶阻力数值计算,分析船舶航行中操舵对船舶快速性的影响。计算常规0°舵角时的船舶阻力,与模型试验结果进行对比,验证数值方法的可靠性,进而对船舶营运中常用舵角范围进行数值模拟,船舶采用的是扭曲舵,因此分别计算舵角为±2.5°,±5°,±7.5°,±10°时船舶的阻力,分析不同舵角下船舶有效功率的变化。计算结果表明,当舵角在±5°的范围内,船舶有效功率约增加1%,舵角的影响较小;当舵角在±7.5°时,船舶有效功率约增加2%;当舵角在±10°时,船舶有效功率增加3%~4%,可知当舵角>5°时对船舶有效功率的影响不能忽略。船舶在实际营运的过程中,应尽量少操舵或小角度操舵,可减小船舶功率消耗、降低油耗,实现节能增效。 The hydrodynamic performance of a container ship with different rudder angles is numerically calculated to investigate the effect of steering.The Computational Fluid Dynamics(CFD)calculation is checked by comparing the computed result with that from the experiment under the condition of centered rudder,and then the simulation investigation follows.A twist rudder is chosen as the object of the investigation.The computed results show that the effective power increases by 1%in the range of±5°rudder angles and increases about by 2% when the rudder angles are±7°and increases about by 3%to 4% when the rudder angles are±10°.It shows that the effect of rudder angles on ship effective power should not be ignored when rudder angle variation exceeds±5°.The rudder angle should be steered as little as possible during navigation and it is positive for energysaving and emission reduction.
作者 薛振宇 陈霞萍 任海奎 XUE Zhenyu;CHEN Xiaping;REN Haikui(Shanghai Ship and Shipping Research Institute, Shanghai 200135, China)
出处 《上海船舶运输科学研究所学报》 2018年第1期6-10,共5页 Journal of Shanghai Ship and Shipping Research Institute
关键词 船舶快速性 舵角 有效功率 计算流体动力学 ship speed and resistance rudder angle ship effective power Computational Fluid Dynamics
  • 相关文献

参考文献1

二级参考文献13

  • 1CHEN H C, CHEN M. Chimera RANS simulation of a berthing DDG-51 ship in translational and rotational motions[J]. International Journal of Offshore and Polar Engineering, 1998, 8(3): 182-191.
  • 2BEN1NI E. Significance of blade element theory in per- formance prediction of marine propellers[J]. Journal of Ocean Engineering, 2004, 31(8): 957-974.
  • 3STERN F, KIM H T, PATEL V C, et al. A viscous flow approach to the computation of propeller-hull intera- ction[J]. Journal of Ship Research, 1988, 32(4): 246- 262.
  • 4KAWAMURA T, MIYATA H, ANDMASHIMO K. Numerical simulation of the flow about self-propelling tanker models[J]. Journal of Marine Science and Tech- nology, 1997, 2(4): 245-256.
  • 5CHOU S K, CHAU S W, CHEN W C, et al. Computa- tions of ship flow around commercial hull forms with free surface or propeller effects[C]. Proceedings of the Workshop on Numerical Ship Hydrodynamics, Gothenburg, Sweden, 2000.
  • 6EL MOCTAR O M. Numerical computations of flow forces in ship maneuvering[J]. Ship Technology Research, 2001, 48(3): 98-123.
  • 7ZHANG Zhi-rong. Verification and validation for RANS simulation of KCS container ship without/with propel- ler[J]. Journal of Hydrodynamics, 2010, 22(5): 932- 939.
  • 8PATERSON E, WILSON G R, STERN F. General-pur- pose parallel unsteady RANS ship hydrodynamics code CFDSHIP-IOWA[R]. IIHR Report, USA, 2003.
  • 9LARSSON L, STERN F, BERTRAM V. Summary con- clusions and recommendations of the Gothenburg 2000 workshop[C]. Gothenburg 2000: A Workshop on Numerical Ship Hydrodynamics, Chalmers University of Technology, Gothenburg, Sweden, 2000.
  • 10VAN S H, KIM W J, YIM G T, et al. Experimental investigation of the flow characteristics around practical hull forms[C]//HINO T. CFD Workshop Tokyo 2005, National Maritime Research Institute, Tokyo, Japan, 2005.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部