摘要
研究了一类具有双时滞的Holling型捕食-食饵模型.讨论了该系统的正平衡点的局部稳定性以及Hopf分支存在的充分条件.利用中心流形定理和规范型理论,得出确定该系统Hopf分支方向和分支周期解稳定性的计算公式.最后,运用数值模拟验证结论.
A predator-prey model with time delay is examined in this work. By analyzing the characteristic equations,we discussed the local stability of equilibria of the system and established the existence of Hopf bifurcation at the coexistence equilibrium. By choosing the delay as a bifurcation parameter,we can determine the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions by using the nomal form theory and center manifold argument. Numerical simulations were carried out to illustrate the main results of this work.
作者
郭伟岸
黄立宏
GUO Wei-an;HUANG Li-hong(College of Mathematics and Econometrics, Hunan Univercity, Changsha, 410082, China)
出处
《湖南师范大学自然科学学报》
CAS
北大核心
2018年第2期63-71,共9页
Journal of Natural Science of Hunan Normal University
基金
国家自然科学基金资助项目(11771059)