期刊文献+

具有非倍测度的参数型Littlewood-Paley算子交换子在Morrey空间的有界性

Boundedness of Commtuators of Parametric Littlewood-Paley on Morrey Spaces with Non-Doubling Measures
下载PDF
导出
摘要 本文证明了参数型Littlewood-Paley算子M*,ρλ和Lipschitz函数b生成的交换子M*,ρλ,b的有界性.在M*,ρλ的核函数满足一类H9ramnder型条件下,证明了M*,ρλ,b是从Morrey空间Mpq(μ)到Morrey空间Mst(μ)有界. In this paper,we prove the boundedness of the commutator M*,ρλ,bgenerated by the parameter M*,ρλwith Lipschitz function b. Under the assumption that the kernel of M*λsatisfies certain condition,we prove that M*,ρλ,bis bounded from the Morrey space Mqp( μ) to the Morrey space Mst(μ).
作者 何随心 周疆 HE Sui-xin;ZHOU Jiang(College of Mathematics and Statistics, Yili Normal Universty, Yili 835000, China;College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China)
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2018年第2期72-77,共6页 Journal of Natural Science of Hunan Normal University
基金 国家自然科学基金资助项目(11661075) 伊犁师范学院博士基金项目(2017YSBS09)
关键词 非倍测度 gλ*函数Mλ* ρ Lipβ(μ)函数 MORREY空间 non-doubling measure g*λ function Lipβ(μ) function Morrey space
  • 相关文献

参考文献6

二级参考文献55

  • 1Yoshihiro SAWANO Hitoshi TANAKA.Morrey Spaces for Non-doubling Measures[J].Acta Mathematica Sinica,English Series,2005,21(6):1535-1544. 被引量:25
  • 2Tolsa X., A proof of the weak (1, 1) inequality for singular integrals with non doubling measures based on a Calder6n-Zygmund decomposition, Publ. Mat., 2001, 45: 163-174.
  • 3Tolsa X., Littlewood-Paley theory and the T(1) theorem with non doubling measures, Adv Math., 2001, 164: 57-116.
  • 4Garcia-Cuerva J., Eduardo G. A., Boundedness properties of fractional integral operators associated to nondoubling measures, Studia Math., 2004, 162(3): 245-261.
  • 5Hu Go , Meng Y., Yang D., Multilinear Commutators of Singular Integrals with Non Doubling Measures, Integral Equations and Operator Theory, 2005, 51: 235-255.
  • 6Stein E. M., On some function of Littlewood-Paley and Zygmund, Bull. Amer Math. Soc., 1961, 67:99-161.
  • 7Fefferman C., Inequalities for strongly singular convolution operators, Acta Math., 1970, 124: 9-36.
  • 8Torchinsky A., Real-Variable Methods in Harmonic Analysis, New York: Academic Press,1986.
  • 9Xue Q., Zhang J., Endpoint estimates for a class of Littlewood-Paley operators with nondoubling measures J. Ineaual Appl., doi: 10.1155/2009/175230.
  • 10Tolsa X., BMO H^1 and Calderon-Zygmund operators for non doubling measures, Math. Ann., 2001, 319: 89-149.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部